Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 46007 by Meritguide1234 last updated on 19/Oct/18

Answered by tanmay.chaudhury50@gmail.com last updated on 21/Oct/18

T_k =1−tan^4 ((π/2^k ))       ={1−tan^2 ((π/2^k ))}{1+tan^2 ((π/2^k ))}        ={((cos^2 ((π/2^k ))−sin^2 ((π/2^k )))/(cos^2 ((π/2^k ))))}×(1/(cos^2 ((π/2^k ))))  T_k =((cos(((2π)/2^k )))/(cos^4 ((π/2^k ))))=((cos((π/2^(k−1) )))/({cos((π/2^k ))}^4 ))  now  T_3 ×T_4 ×T_5 ×T_6 ...×T_n   =((cos((π/2^(3−1) ))cos((π/2^(4−1) ))cos((π/2^(5−1) ))...cos((π/2^(n−1) )))/([cos((π/2^3 ))cos((π/2^4 ))cos((π/2^5 ))...cos((π/2^n ))]^4 ))  now see the first term of N_r =cos((π/2^2 ))  see the nth of D_r =(1/([cos((π/2^n ))]^4 ))  both remain unchanged...  =((cos((π/2^2 )))/(cos^4 ((π/2^n ))))×(1/([cos((π/2^3 ))cos((π/2^4 ))cos((π/2^5 ))...cos((π/2^(n−1) ))]^3 ))  =the red marked value to be calculated...  wait...  =((cos((π/4)))/(cos((π/2^n ))))×(1/([cos((π/2^3 ))cos((π/2^4 ))...cos((π/2^(n−1) ))cos((π/2^n ))]^3 ))  sin((π/2^2 ))=2cos((π/2^3 ))sin((π/2^3 ))                =2^2 cos((π/2^3 ))cos((π/2^4 ))sin((π/2^4 ))                =2^3 cos((π/2^3 ))cos((π/2^4 ))cos((π/2^5 ))sin((π/2^5 ))  cos((π/2^3 ))cos((π/2^4 ))cos((π/2^5 ))...cos((π/2^n ))=((sin((π/2^2 )))/(2^(f(n)) sin((π/2^n ))))=((sin((π/4)))/(2^(f(n)) ×sin((π/2^n ))))  the value of f(n)to find...wait   and condition   n→∞ to put   pls wait...  now putting thevalue  ((cos((π/4)))/(cos((π/2^n ))))×[((2^(f(n)) sin((π/2^n )))/(sin((π/4))))]^3   when n→∞  cos((π/2^n ))→1 but sin((π/2^n ))→0  so answer is zero pls check...

Tk=1tan4(π2k)={1tan2(π2k)}{1+tan2(π2k)}={cos2(π2k)sin2(π2k)cos2(π2k)}×1cos2(π2k)Tk=cos(2π2k)cos4(π2k)=cos(π2k1){cos(π2k)}4nowT3×T4×T5×T6...×Tn=cos(π231)cos(π241)cos(π251)...cos(π2n1)[cos(π23)cos(π24)cos(π25)...cos(π2n)]4nowseethefirsttermofNr=cos(π22)seethenthofDr=1[cos(π2n)]4bothremainunchanged...=cos(π22)cos4(π2n)×1[cos(π23)cos(π24)cos(π25)...cos(π2n1)]3=theredmarkedvaluetobecalculated...wait...=cos(π4)cos(π2n)×1[cos(π23)cos(π24)...cos(π2n1)cos(π2n)]3sin(π22)=2cos(π23)sin(π23)=22cos(π23)cos(π24)sin(π24)=23cos(π23)cos(π24)cos(π25)sin(π25)cos(π23)cos(π24)cos(π25)...cos(π2n)=sin(π22)2f(n)sin(π2n)=sin(π4)2f(n)×sin(π2n)thevalueoff(n)tofind...waitandconditionntoputplswait...nowputtingthevaluecos(π4)cos(π2n)×[2f(n)sin(π2n)sin(π4)]3whenncos(π2n)1butsin(π2n)0soansweriszeroplscheck...

Commented by Meritguide1234 last updated on 22/Oct/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com