All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 46007 by Meritguide1234 last updated on 19/Oct/18
Answered by tanmay.chaudhury50@gmail.com last updated on 21/Oct/18
Tk=1−tan4(π2k)={1−tan2(π2k)}{1+tan2(π2k)}={cos2(π2k)−sin2(π2k)cos2(π2k)}×1cos2(π2k)Tk=cos(2π2k)cos4(π2k)=cos(π2k−1){cos(π2k)}4nowT3×T4×T5×T6...×Tn=cos(π23−1)cos(π24−1)cos(π25−1)...cos(π2n−1)[cos(π23)cos(π24)cos(π25)...cos(π2n)]4nowseethefirsttermofNr=cos(π22)seethenthofDr=1[cos(π2n)]4bothremainunchanged...=cos(π22)cos4(π2n)×1[cos(π23)cos(π24)cos(π25)...cos(π2n−1)]3=theredmarkedvaluetobecalculated...wait...=cos(π4)cos(π2n)×1[cos(π23)cos(π24)...cos(π2n−1)cos(π2n)]3sin(π22)=2cos(π23)sin(π23)=22cos(π23)cos(π24)sin(π24)=23cos(π23)cos(π24)cos(π25)sin(π25)cos(π23)cos(π24)cos(π25)...cos(π2n)=sin(π22)2f(n)sin(π2n)=sin(π4)2f(n)×sin(π2n)thevalueoff(n)tofind...waitandconditionn→∞toputplswait...nowputtingthevaluecos(π4)cos(π2n)×[2f(n)sin(π2n)sin(π4)]3whenn→∞cos(π2n)→1butsin(π2n)→0soansweriszeroplscheck...
Commented by Meritguide1234 last updated on 22/Oct/18
Terms of Service
Privacy Policy
Contact: info@tinkutara.com