All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 46020 by mondodotto@gmail.com last updated on 20/Oct/18
Answered by tanmay.chaudhury50@gmail.com last updated on 20/Oct/18
=12∫x2+x+1xx2+x+1dx=12∫xx2+x+1+12∫dxx2+x+1+12∫dxxx2+x+1=14∫2x+1−1x2+x+1+12∫dxx2+x+1+12∫dxxx2+x+1=14∫d(x2+x+1)x2+x+1+(12−14)∫dxx2+2.x.12+14+34+12∫dxxx2+x+1I1+I2+I3I1=14×(x2+x+1)−12+112+c1I1=12×x2+x+1+c1←I1I2=14∫dx(x+12)2+(32)2I2=14ln{(x+12)+(x+12)2+(32)2}+c2=14ln{(x+12)+x2+x+1}+c2I3=12∫dxxx2+x+1letx=1tdx=−1t2dt=12∫−dtt2×1t×1t2+1t+1=−12∫tdtt1+t+t2=−12∫dt(t+12)2+(32)2−12ln{(t+12)+(t+12)2+(32)2}+c3=−12ln{(1x+12)+1+1x+1x2}+c3
Terms of Service
Privacy Policy
Contact: info@tinkutara.com