Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 46020 by mondodotto@gmail.com last updated on 20/Oct/18

Answered by tanmay.chaudhury50@gmail.com last updated on 20/Oct/18

=(1/2)∫((x^2 +x+1)/(x(√(x^2 +x+1))))dx  =(1/2)∫(x/(√(x^2 +x+1)))+(1/2)∫(dx/(√(x^2 +x+1)))+(1/2)∫(dx/(x(√(x^2 +x+1))))  =(1/4)∫((2x+1−1)/(√(x^2 +x+1)))+(1/2)∫(dx/(√(x^2 +x+1)))+(1/2)∫(dx/(x(√(x^2 +x+1))))  =(1/4)∫((d(x^2 +x+1))/(√(x^2 +x+1)))+((1/2)−(1/4))∫(dx/(√(x^2 +2.x.(1/2)+(1/4)+(3/4))))+(1/2)∫(dx/(x(√(x^2 +x+1))))  I_1 +I_2 +I_3   I_1 =(1/4)×(((x^2 +x+1)^(((−1)/2)+1) )/(1/2))+c_1   I_1 =(1/2)×(√(x^2 +x+1)) +c_1 ←I_1   I_2 =(1/4)∫(dx/((√((x+(1/2))^2 +(((√3)/2))^2 )) ))  I_2 =(1/4)ln{(x+(1/2))+(√((x+(1/2))^2 +(((√3)/2))^2 )) }+c_2        =(1/4)ln{(x+(1/2))+(√(x^2 +x+1)) }+c_2   I_3 =(1/2)∫(dx/(x(√(x^2 +x+1)) ))  let x=(1/t)   dx=−(1/t^2 )dt  =(1/2)∫((−dt)/(t^2 ×(1/t)×(√((1/t^2 )+(1/t)+1))))  =((−1)/2)∫((tdt)/(t(√(1+t+t^2 ))))  =((−1)/2)∫(dt/(√((t+(1/2))^2 +(((√3)/2))^2 )))  ((−1)/2)ln{(t+(1/2))+(√((t+(1/2))^2 +(((√3)/2))^2 )) }+c_3   =((−1)/2)ln{((1/x)+(1/2))+(√(1+(1/x)+(1/x^2 ))) }+c_3

=12x2+x+1xx2+x+1dx=12xx2+x+1+12dxx2+x+1+12dxxx2+x+1=142x+11x2+x+1+12dxx2+x+1+12dxxx2+x+1=14d(x2+x+1)x2+x+1+(1214)dxx2+2.x.12+14+34+12dxxx2+x+1I1+I2+I3I1=14×(x2+x+1)12+112+c1I1=12×x2+x+1+c1I1I2=14dx(x+12)2+(32)2I2=14ln{(x+12)+(x+12)2+(32)2}+c2=14ln{(x+12)+x2+x+1}+c2I3=12dxxx2+x+1letx=1tdx=1t2dt=12dtt2×1t×1t2+1t+1=12tdtt1+t+t2=12dt(t+12)2+(32)212ln{(t+12)+(t+12)2+(32)2}+c3=12ln{(1x+12)+1+1x+1x2}+c3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com