All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 46032 by Tawa1 last updated on 20/Oct/18
Findthesum:∑nk=1tan−1(2k2+k2+k4)Answer:tan−1(n2+n+1)−π4
Answered by tanmay.chaudhury50@gmail.com last updated on 20/Oct/18
Tk=tan−1(2k1+1+k2+k4)nowk4+k2+1=(k2)2+2.k2.1+(1)2−k2=(k2+1)2−(k)2=(k2+1+k)(k2+1−k)see{(k2+k+1)−(k2−k+1)}=2ksoTk=tan−1(2k1+k2+k4)=tan−1[{(k2+k+1)−(k2−k+1)}1+(k2+k+1)(k2−k+1)]=tan−1(k2+k+1)−tan−1(k2−k+1)T1=tan−1(3)−tan−1(1)T2=tan−1(7)−tan−1(3)T3=tan−1(13)−tan−1(7)........Tn=tan−1(n2+n+1)−tan−1(n2−n+1)addthemafteradditiononlytan−1(n2+n+1)andtan−1(1)remainsotherstermscancelssoanswerisSn=tan−1(n2+n+1)−tan−1(1)=tan−(n2+n+1)−π4)
Commented by Tawa1 last updated on 20/Oct/18
Godblessyousir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com