Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 46073 by ajfour last updated on 20/Oct/18

Commented by ajfour last updated on 20/Oct/18

Determine coordinates of A;     b > c . P is contact point of side  AB of △ABC with upper rim of  cylinder (height H, radius R).

DeterminecoordinatesofA;b>c.PiscontactpointofsideABofABCwithupperrimofcylinder(heightH,radiusR).

Answered by MrW3 last updated on 23/Oct/18

let d=(√(R^2 −(a^2 /4)))  x_B =(a/2)  y_B =−d  x_C =−(a/2)  y_C =−d  z_B =z_C =0  x_P =R cos φ  y_P =R sin φ  z_P =H  x_A =(a/2)+(R cos φ−(a/2))λ  ⇒x_A −x_B =(R cos φ−(a/2))λ  ⇒x_A −x_C =a+(R cos φ−(a/2))λ  y_A =−d+(R sin φ+d)λ  ⇒y_A −y_B =(R sin φ+d)λ  ⇒y_A −y_C =(R sin φ+d)λ  z_A =Hλ  ⇒z_A −z_B =Hλ  ⇒z_A −z_C =Hλ  AB=(√((x_A −x_B )^2 +(y_A −y_B )^2 +(z_A −z_B )^2 ))=c  ⇒λ(√((R cos φ−(a/2))^2 +(R sin φ+d)^2 +H^2 ))=c   ...(i)    AC=(√((x_A −x_C )^2 +(y_A −y_C )^2 +(z_A −z_C )^2 ))=b  ⇒λ(√(((a/λ)+R cos φ−(a/2))^2 +(R sin φ+d)^2 +H^2 ))=b    ...(ii)  ⇒λ(√(((a/λ))^2 +2((a/λ))(R cos φ−(a/2))+(R cos φ−(a/2))^2 +(R sin φ+d)^2 +H^2 ))=b  ⇒λ(√(((a/λ))^2 +2((a/λ))(R cos φ−(a/2))+(c^2 /λ^2 )))=b  ⇒(√(a^2 +c^2 +2aλ(R cos φ−(a/2))))=b  ⇒2aλ(R cos φ−(a/2))=b^2 −(a^2 +c^2 )  ⇒cos φ=(1/(2R))[a−((a^2 +c^2 −b^2 )/(aλ))]   ...(iii)  (i):  λ(√(R^2 −aR cos φ+(a^2 /4)+2dR sin φ+d^2 +H^2 ))=c  λ(√(2R^2 +H^2 −R(a cos φ−2d sin φ)))=c  H^2 +2R^2 [1−sin (α−φ)]=(c^2 /λ^2 )  sin (α−φ)=1−(1/(2R^2 ))((c^2 /λ^2 ) −H^2 )  ...(iv)  with α=sin^(−1) (a/(2R))    put (iii) into (iv) we get an eqn. for λ.  with λ and φ we can get the coordinates  of point A.    ⇒cos^(−1) [(1/(2aR))(a^2 −((a^2 +c^2 −b^2 )/λ))] +cos^(−1) [1−(1/(2R^2 ))((c^2 /λ^2 ) −H^2 )]=sin^(−1) (a/(2R))

letd=R2a24xB=a2yB=dxC=a2yC=dzB=zC=0xP=RcosϕyP=RsinϕzP=HxA=a2+(Rcosϕa2)λxAxB=(Rcosϕa2)λxAxC=a+(Rcosϕa2)λyA=d+(Rsinϕ+d)λyAyB=(Rsinϕ+d)λyAyC=(Rsinϕ+d)λzA=HλzAzB=HλzAzC=HλAB=(xAxB)2+(yAyB)2+(zAzB)2=cλ(Rcosϕa2)2+(Rsinϕ+d)2+H2=c...(i)AC=(xAxC)2+(yAyC)2+(zAzC)2=bλ(aλ+Rcosϕa2)2+(Rsinϕ+d)2+H2=b...(ii)λ(aλ)2+2(aλ)(Rcosϕa2)+(Rcosϕa2)2+(Rsinϕ+d)2+H2=bλ(aλ)2+2(aλ)(Rcosϕa2)+c2λ2=ba2+c2+2aλ(Rcosϕa2)=b2aλ(Rcosϕa2)=b2(a2+c2)cosϕ=12R[aa2+c2b2aλ]...(iii)(i):λR2aRcosϕ+a24+2dRsinϕ+d2+H2=cλ2R2+H2R(acosϕ2dsinϕ)=cH2+2R2[1sin(αϕ)]=c2λ2sin(αϕ)=112R2(c2λ2H2)...(iv)withα=sin1a2Rput(iii)into(iv)wegetaneqn.forλ.withλandϕwecangetthecoordinatesofpointA.cos1[12aR(a2a2+c2b2λ)]+cos1[112R2(c2λ2H2)]=sin1a2R

Commented by ajfour last updated on 21/Oct/18

Thanks a lot Sir, but can you  please check my equation for z_A  ?  If  c=b,  and even a=2R, i think  i get from my answer,       z = (√((R^( 4) /H^2 )+b^2 )) −(R^( 2) /H) .   Does this seem true, Sir ?

ThanksalotSir,butcanyoupleasecheckmyequationforzA?Ifc=b,andevena=2R,ithinkigetfrommyanswer,z=R4H2+b2R2H.Doesthisseemtrue,Sir?

Commented by MrW3 last updated on 21/Oct/18

a=2R⇒d=0  c=b  ⇒cos φ=1−(1/λ)  λ(√(H^2 +((2R^2 )/λ)))=b  λ^2 (H^2 +((2R^2 )/λ))=b^2   H^2 λ^2 +2R^2 λ−b^2 =0  λ=((−R^2 +(√(R^4 +H^2 b^2 )))/H^2 )=(√(((R/H))^4 +((b/H))^2 ))−((R/H))^2   z_A =λH=(√((R^4 /H^2 )+b^2 ))−(R^2 /H)  ⇒your answer is correct.

a=2Rd=0c=bcosϕ=11λλH2+2R2λ=bλ2(H2+2R2λ)=b2H2λ2+2R2λb2=0λ=R2+R4+H2b2H2=(RH)4+(bH)2(RH)2zA=λH=R4H2+b2R2Hyouransweriscorrect.

Commented by ajfour last updated on 23/Oct/18

Quite compact Sir!

QuitecompactSir!

Answered by ajfour last updated on 21/Oct/18

[4R^2 +4(c^2 −z^2 )(((z−H)/z))−(((b^2 −c^2 )/a))^2 ]  ×(R^2 −(a^2 /4))  =[(((b^2 +c^2 )/2))−2R^2 −zH−c^2 (((z−H)/z))]^2

[4R2+4(c2z2)(zHz)(b2c2a)2]×(R2a24)=[(b2+c22)2R2zHc2(zHz)]2

Answered by ajfour last updated on 21/Oct/18

A(rsin θ, rcos θ, z)   θ being angle of radius from  y-axes.  R sin α = (a/2)  , Rcos α = (√(R^2 −(a^2 /4)))  B((a/2), −Rcos α, 0)  C(−(a/2), −Rcos α, 0)  (rsin θ−(a/2))^2 +(rcos θ+Rcos α)^2                                +z^2  = c^2       ...(i)  (rsin θ+(a/2))^2 +(rcos θ+Rcos α)^2                                 +z^2  = b^2       ....(ii)  (i)−(ii) gives        2arsin 𝛉 = b^2 −c^2      ....(I)   2rcos θ = (√(4r^2 −(((b^2 −c^2 )/a))^2 ))  ..(II)  APB is straight, hence  ((rsin θ−Rsin φ)/(rsin θ−(a/2))) = ((rcos θ−Rcos φ)/(rcos θ+Rcos α))                                  = ((z−H)/z)       ....(iii)      (Rsin φ)^2 +(Rcos φ)^2 = R^2    ,  so  [rsin θ−(((z−H)/z))(rsin θ−(a/2))]^2    +[rcos θ−(((z−H)/z))(rcos θ+Rcos α)]^2 = R^2   .....  .....

A(rsinθ,rcosθ,z)θbeingangleofradiusfromyaxes.Rsinα=a2,Rcosα=R2a24B(a2,Rcosα,0)C(a2,Rcosα,0)(rsinθa2)2+(rcosθ+Rcosα)2+z2=c2...(i)(rsinθ+a2)2+(rcosθ+Rcosα)2+z2=b2....(ii)(i)(ii)gives2arsinθ=b2c2....(I)2rcosθ=4r2(b2c2a)2..(II)APBisstraight,hencersinθRsinϕrsinθa2=rcosθRcosϕrcosθ+Rcosα=zHz....(iii)(Rsinϕ)2+(Rcosϕ)2=R2,so[rsinθ(zHz)(rsinθa2)]2+[rcosθ(zHz)(rcosθ+Rcosα)]2=R2..........

Terms of Service

Privacy Policy

Contact: info@tinkutara.com