Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 46091 by sandeepkeshari0797@gmail.com last updated on 21/Oct/18

Commented by maxmathsup by imad last updated on 21/Oct/18

let f(t)=∫_0 ^u  ((sinx)/x)e^(−tx) dx  with t≥o  we have f^′ (t)=−∫_0 ^u  sinx e^(−tx) dx  ⇒−f^′ (t)=Im(∫_0 ^u  e^(ix)  e^(−tx) dx)=Im ( ∫_0 ^u   e^((i−t)x) dx) but  ∫_0 ^u  e^((i−t)x) dx =[(1/(i−t)) e^((i−t)x) ]_0 ^u  =(1/(i−t))( e^((i−t)u) −1)  = (1/(t−i))( 1−e^(−tu) (cosu +isinu))=((t+i)/(t^2 +1)){ 1−e^(−tu) cosu −i e^(−tu)  sinu}  =((t−t e^(−tu) cosu−it e^(−tu) sinu +i(1−e^(−tu) cosu )+e^(−tu) sinu)/(1+t^2 ))  =((t−t e^(−tu) cosu +e^(−tu) sinu  +i(1−e^(−tu) cosu−t e^(−tu) sinu))/(1+t^2 )) ⇒  f^′ (t)=((t e^(−tu) sinu +e^(−tu)  cosu −1)/(1+t^2 )) ⇒ f(t)= ∫_0 ^t   ((x e^(−xu) sinu +e^(−xu) cosu−1)/(1+x^2 ))dx+c  c=f(o)=∫_0 ^u  ((sinx)/x)dx   ....be continued...

letf(t)=0usinxxetxdxwithtowehavef(t)=0usinxetxdxf(t)=Im(0ueixetxdx)=Im(0ue(it)xdx)but0ue(it)xdx=[1ite(it)x]0u=1it(e(it)u1)=1ti(1etu(cosu+isinu))=t+it2+1{1etucosuietusinu}=ttetucosuitetusinu+i(1etucosu)+etusinu1+t2=ttetucosu+etusinu+i(1etucosutetusinu)1+t2f(t)=tetusinu+etucosu11+t2f(t)=0txexusinu+exucosu11+x2dx+cc=f(o)=0usinxxdx....becontinued...

Answered by tanmay.chaudhury50@gmail.com last updated on 21/Oct/18

sinx=x−(x^3 /(3!))+(x^5 /(5!))−(x^7 /(7!))+...  ∫((sinx)/x)dx  ∫1−(x^2 /(3!))+(x^4 /(5!))−(x^6 /(7!))+... dx  =x−(x^3 /(3×3!))+(x^5 /(5×5!))−(x^7 /(7×7!))+...      C

sinx=xx33!+x55!x77!+...sinxxdx1x23!+x45!x67!+...dx=xx33×3!+x55×5!x77×7!+...C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com