All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 46091 by sandeepkeshari0797@gmail.com last updated on 21/Oct/18
Commented by maxmathsup by imad last updated on 21/Oct/18
letf(t)=∫0usinxxe−txdxwitht⩾owehavef′(t)=−∫0usinxe−txdx⇒−f′(t)=Im(∫0ueixe−txdx)=Im(∫0ue(i−t)xdx)but∫0ue(i−t)xdx=[1i−te(i−t)x]0u=1i−t(e(i−t)u−1)=1t−i(1−e−tu(cosu+isinu))=t+it2+1{1−e−tucosu−ie−tusinu}=t−te−tucosu−ite−tusinu+i(1−e−tucosu)+e−tusinu1+t2=t−te−tucosu+e−tusinu+i(1−e−tucosu−te−tusinu)1+t2⇒f′(t)=te−tusinu+e−tucosu−11+t2⇒f(t)=∫0txe−xusinu+e−xucosu−11+x2dx+cc=f(o)=∫0usinxxdx....becontinued...
Answered by tanmay.chaudhury50@gmail.com last updated on 21/Oct/18
sinx=x−x33!+x55!−x77!+...∫sinxxdx∫1−x23!+x45!−x67!+...dx=x−x33×3!+x55×5!−x77×7!+...C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com