Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 46101 by Saorey last updated on 21/Oct/18

I=∫(x^(n+1) /(√(1+x^n )))dx=?

I=xn+11+xndx=?

Answered by tanmay.chaudhury50@gmail.com last updated on 21/Oct/18

x^n =tan^2 θ    so nx^(n−1) dx=2tanθsec^2 θdθ  dx=(2/n)×((tanθsec^2 θ)/([(tanθ)^(2/n) ]^(n−1) ))dθ  ∫(([(tanθ)^(2/n) ]^(n+1) )/(secθ))×(2/n)×((tanθsec^2 θ)/([(tanθ)^(2/n) ]^(n−1) ))dθ  (2/n)∫tanθsecθ×(tanθ)^(((2n+2)/n)−((2n−2)/n)) dθ  (2/n)∫tanθsecθtan^(4/n) θ dθ  (2/n)∫tanθsecθ(tan^2 θ)^(2/n) dθ  (2/n)∫tanθsecθ(sec^2 θ−1)^(2/n) dθ  k=secθ   dk=secθtanθdθ  (2/n)∫(k^2 −1)^(2/n) dk  p=(2/n)  p∫(k^2 −1)^p dk=pI_p   I_p =∫(k^2 −1)^p dk    =(k^2 −1)^p k−∫p(k^2 −1)^(p−1) ×2k×kdk  =(k^2 −1)^p k−2p∫(k^2 −1)^(p−1) (k^2 −1+1)dk  =k(k^2 −1)^p −2p[∫(k^2 −1)^p +∫(k^2 −1)^(p−1) ]dk  =k(k^2 −1)^p −2p×I_p −2pI_(p−1)   (2p+1)I_p =k(k^2 −1)^p −2pI_(p−1)   I_p =(k/(2p+1))(k^2 −1)^p −((2p)/(2p+1))I_(p−1)   pI_p =((kp)/(2p+1))(k^2 −1)^p −((2p^2 )/(2p+2))I_(p−1)   (2/n)I_(2/n) =((k((2/n)))/(2((2/n))+1))(k^2 −1)^(2/n) −((2((2/n))^2 )/(2((2/n))+2))I_((2/n)−1)   (2/n)I_(2/n) =((2/n)/((4/n)+1))secθ×tan^(4/n) θ−((8/n^2 )/((4/n)+2))I_((2/n)−1)   contd...

xn=tan2θsonxn1dx=2tanθsec2θdθdx=2n×tanθsec2θ[(tanθ)2n]n1dθ[(tanθ)2n]n+1secθ×2n×tanθsec2θ[(tanθ)2n]n1dθ2ntanθsecθ×(tanθ)2n+2n2n2ndθ2ntanθsecθtan4nθdθ2ntanθsecθ(tan2θ)2ndθ2ntanθsecθ(sec2θ1)2ndθk=secθdk=secθtanθdθ2n(k21)2ndkp=2np(k21)pdk=pIpIp=(k21)pdk=(k21)pkp(k21)p1×2k×kdk=(k21)pk2p(k21)p1(k21+1)dk=k(k21)p2p[(k21)p+(k21)p1]dk=k(k21)p2p×Ip2pIp1(2p+1)Ip=k(k21)p2pIp1Ip=k2p+1(k21)p2p2p+1Ip1pIp=kp2p+1(k21)p2p22p+2Ip12nI2n=k(2n)2(2n)+1(k21)2n2(2n)22(2n)+2I2n12nI2n=2n4n+1secθ×tan4nθ8n24n+2I2n1contd...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com