All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 46101 by Saorey last updated on 21/Oct/18
I=∫xn+11+xndx=?
Answered by tanmay.chaudhury50@gmail.com last updated on 21/Oct/18
xn=tan2θsonxn−1dx=2tanθsec2θdθdx=2n×tanθsec2θ[(tanθ)2n]n−1dθ∫[(tanθ)2n]n+1secθ×2n×tanθsec2θ[(tanθ)2n]n−1dθ2n∫tanθsecθ×(tanθ)2n+2n−2n−2ndθ2n∫tanθsecθtan4nθdθ2n∫tanθsecθ(tan2θ)2ndθ2n∫tanθsecθ(sec2θ−1)2ndθk=secθdk=secθtanθdθ2n∫(k2−1)2ndkp=2np∫(k2−1)pdk=pIpIp=∫(k2−1)pdk=(k2−1)pk−∫p(k2−1)p−1×2k×kdk=(k2−1)pk−2p∫(k2−1)p−1(k2−1+1)dk=k(k2−1)p−2p[∫(k2−1)p+∫(k2−1)p−1]dk=k(k2−1)p−2p×Ip−2pIp−1(2p+1)Ip=k(k2−1)p−2pIp−1Ip=k2p+1(k2−1)p−2p2p+1Ip−1pIp=kp2p+1(k2−1)p−2p22p+2Ip−12nI2n=k(2n)2(2n)+1(k2−1)2n−2(2n)22(2n)+2I2n−12nI2n=2n4n+1secθ×tan4nθ−8n24n+2I2n−1contd...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com