Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 46129 by Necxx last updated on 21/Oct/18

Commented by Meritguide1234 last updated on 21/Oct/18

put x=tanθ  ∫_0 ^(π/4) log(1+tanθ)dθ  use f(a−x)→f(x)  I=(π/8)log2

putx=tanθ0π/4log(1+tanθ)dθusef(ax)f(x)I=π8log2

Commented by maxmathsup by imad last updated on 21/Oct/18

changement x=tanθ give I = ∫_0 ^(π/4)    ((ln(1+tanθ))/(1+tan^2 θ)) (1+tan^2 θ)dθ  =∫_0 ^(π/4) ln(((cosθ +sinθ)/(cosθ)))dθ =∫_0 ^(π/4) ln((√2)cos(θ−(π/4)))dθ −∫_0 ^(π/4) ln(cosθ)dθ  =(π/8)ln(2) + ∫_0 ^(π/4) cos(θ−(π/4))dθ−∫_0 ^(π/4) ln(cosθ)dθ but  ∫_0 ^(π/4) cos(θ−(π/4))dθ =∫_0 ^(π/4) cos((π/4) −θ)dθ =_((π/4)−θ=u)  ∫_(π/4) ^0 cos(u)(−du)  =∫_0 ^(π/4) cos(u)du ⇒★ ∫_0 ^1    ((ln(1+x))/(1+x^2 ))dx =(π/8)ln(2) ★

changementx=tanθgiveI=0π4ln(1+tanθ)1+tan2θ(1+tan2θ)dθ=0π4ln(cosθ+sinθcosθ)dθ=0π4ln(2cos(θπ4))dθ0π4ln(cosθ)dθ=π8ln(2)+0π4cos(θπ4)dθ0π4ln(cosθ)dθbut0π4cos(θπ4)dθ=0π4cos(π4θ)dθ=π4θ=uπ40cos(u)(du)=0π4cos(u)du01ln(1+x)1+x2dx=π8ln(2)

Commented by Necxx last updated on 22/Oct/18

thank you so much

thankyousomuch

Commented by Necxx last updated on 22/Oct/18

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com