Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 4614 by love math last updated on 14/Feb/16

(√x^(log_2 (√x)) )>2

$$\sqrt{{x}^{{log}_{\mathrm{2}} \sqrt{{x}}} }>\mathrm{2} \\ $$

Commented byYozzii last updated on 14/Feb/16

Squaring both sides of the given   inequality yields the following.  x^(log_2 (√x)) >4                 (∗)  Taking logs to base 2 on both sides  of (∗) we obtain   log_2 x^(log_2 (√x)) >log_2 2^2   By the power rule we have   (log_2 (√x))(log_2 x)>2log_2 2=2  (1/2)(log_2 x)(log_2 x)>2  (log_2 x)^2 >4  (log_2 x−2)(log_2 x+2)>0  ⇒ (1)log_2 x−2>0 and log_2 x+2>0  ⇒ x>4 and x>2^(−2) ⇒ x>4    or ⇒(2) log_2 x−2<0 and log_2 x+2<0  ⇒x<4 and x<2^(−2) ⇒ x<1/4  x must be strictly positive however  for  (√x)∈R. So, truly 0<x<1/4.    Hence, the solution set Υ for the   inequality is Υ={x∈R∣0<x<1/4 or x>4}.

$${Squaring}\:{both}\:{sides}\:{of}\:{the}\:{given}\: \\ $$ $${inequality}\:{yields}\:{the}\:{following}. \\ $$ $${x}^{{log}_{\mathrm{2}} \sqrt{{x}}} >\mathrm{4}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\ast\right) \\ $$ $${Taking}\:{logs}\:{to}\:{base}\:\mathrm{2}\:{on}\:{both}\:{sides} \\ $$ $${of}\:\left(\ast\right)\:{we}\:{obtain}\: \\ $$ $${log}_{\mathrm{2}} {x}^{{log}_{\mathrm{2}} \sqrt{{x}}} >{log}_{\mathrm{2}} \mathrm{2}^{\mathrm{2}} \\ $$ $${By}\:{the}\:{power}\:{rule}\:{we}\:{have}\: \\ $$ $$\left({log}_{\mathrm{2}} \sqrt{{x}}\right)\left({log}_{\mathrm{2}} {x}\right)>\mathrm{2}{log}_{\mathrm{2}} \mathrm{2}=\mathrm{2} \\ $$ $$\frac{\mathrm{1}}{\mathrm{2}}\left({log}_{\mathrm{2}} {x}\right)\left({log}_{\mathrm{2}} {x}\right)>\mathrm{2} \\ $$ $$\left({log}_{\mathrm{2}} {x}\right)^{\mathrm{2}} >\mathrm{4} \\ $$ $$\left({log}_{\mathrm{2}} {x}−\mathrm{2}\right)\left({log}_{\mathrm{2}} {x}+\mathrm{2}\right)>\mathrm{0} \\ $$ $$\Rightarrow\:\left(\mathrm{1}\right){log}_{\mathrm{2}} {x}−\mathrm{2}>\mathrm{0}\:{and}\:{log}_{\mathrm{2}} {x}+\mathrm{2}>\mathrm{0} \\ $$ $$\Rightarrow\:{x}>\mathrm{4}\:{and}\:{x}>\mathrm{2}^{−\mathrm{2}} \Rightarrow\:{x}>\mathrm{4} \\ $$ $$ \\ $$ $${or}\:\Rightarrow\left(\mathrm{2}\right)\:{log}_{\mathrm{2}} {x}−\mathrm{2}<\mathrm{0}\:{and}\:{log}_{\mathrm{2}} {x}+\mathrm{2}<\mathrm{0} \\ $$ $$\Rightarrow{x}<\mathrm{4}\:{and}\:{x}<\mathrm{2}^{−\mathrm{2}} \Rightarrow\:{x}<\mathrm{1}/\mathrm{4} \\ $$ $${x}\:{must}\:{be}\:{strictly}\:{positive}\:{however} \\ $$ $${for}\:\:\sqrt{{x}}\in\mathbb{R}.\:{So},\:{truly}\:\mathrm{0}<{x}<\mathrm{1}/\mathrm{4}. \\ $$ $$ \\ $$ $${Hence},\:{the}\:{solution}\:{set}\:\Upsilon\:{for}\:{the}\: \\ $$ $${inequality}\:{is}\:\Upsilon=\left\{{x}\in\mathbb{R}\mid\mathrm{0}<{x}<\mathrm{1}/\mathrm{4}\:{or}\:{x}>\mathrm{4}\right\}. \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com