Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 46156 by Meritguide1234 last updated on 21/Oct/18

Answered by tanmay.chaudhury50@gmail.com last updated on 21/Oct/18

x^4 +2x^3 −x^2 +2x+1  =x^2 (x^2 +(1/x^2 )+2x+(2/x)−1)  =x^2 {(x+(1/x))^2 −2+2(x+(1/x))−1}  =x^2 {(x+(1/x))^2 +2(x+(1/x))−3}  ∫(((1−(1/x^2 ))×x(√({(x+(1/x))^2 +2(x+(1/x))−3)) )/((x+1)^2 )) dx  ∫(((1−(1/x^2 ))×x×(√({(x+(1/x))^2 +2(x+(1/x))−3)) dx)/(x(x+2+(1/x))))  t=x+(1/x)   dt=1−(1/x^2 )dx  ∫((√(t^2 +2t−3))/(t+2))dt   ←standard form     ∫((t^2 +2t−3)/((t+2)(√(t^2 +2t−3)) ))dt    ∫((tdt)/(√(t^2 +2t−3)))−∫((3dt)/((t+2)(√(t^2 +2t−3))))  (1/2)∫((2t+2−2)/(√(t^2 +2t−3)))−3∫(dt/((t+2)(√(t^2 +2t−3)) ))  (1/2)∫((d(t^2 +2t−3))/(√(t^2 +2t−3)))−∫(dt/(√((t+1)^2 −4)))−∫(dt/((t+2)(√(t^2 +2t−3))))  (1/2)×(((t^2 +2t−3)^(((−1)/2)+1) )/(1/2))−ln{(t+1)+(√(t^2 +2t−1)) +I_3   ={(x+(1/x))^2 +2(x+(1/x))−3}^(1/2) −ln{(x+(1/x)+1)+(√((x+(1/x))^2 +2(x+(1/x))1)) +I_3   now calcukating I_3   ∫(dt/((t+2)(√(t^2 +2t−3))))  t+2=(1/k)   dt=((−1)/k^2 )dk  ∫((−dk)/(k^2 ×(1/k)(√(((1/k)−2)^2 +2((1/k)−2)−3))))  ∫((−dk)/(k(√((1/k^2 )−(4/k)+4+(2/k)−4−3))))  ∫((−dk)/(k(√((1−4k+4k^2 +2k−7k^2 )/k^2 ))))  ∫((−dk)/(√(−3k^2 −2k+1)))  ∫((−dk)/(√(1−3(k^2 +(2/3)k+(1/9)−(1/9)))))  ∫((−dk)/(√(1−3{(k+(1/3))^2 −(1/9)})))  ∫((−dk)/(√(1+(1/3)−3(k+(1/3))^2 )))  ∫((−dk)/(√((4/3)−3(k+(1/3))^2 )))  (1/(√3))∫((−dk)/(√(((2/3))^2 −(k+(1/3))^2 )))  =((−1)/(√3))×sin^(−1) (((k+(1/3))/(2/3)))  =((−1)/(√3))sin^(−1) ((((1/(t+2))+(1/3))/(2/3)))  ((−1)/(√3))sin^(−1) ((((1/(x+(1/x)+2))+(1/3))/(2/3)))+c

x4+2x3x2+2x+1=x2(x2+1x2+2x+2x1)=x2{(x+1x)22+2(x+1x)1}=x2{(x+1x)2+2(x+1x)3}(11x2)×x{(x+1x)2+2(x+1x)3(x+1)2dx(11x2)×x×{(x+1x)2+2(x+1x)3dxx(x+2+1x)t=x+1xdt=11x2dxt2+2t3t+2dtstandardformt2+2t3(t+2)t2+2t3dttdtt2+2t33dt(t+2)t2+2t3122t+22t2+2t33dt(t+2)t2+2t312d(t2+2t3)t2+2t3dt(t+1)24dt(t+2)t2+2t312×(t2+2t3)12+112ln{(t+1)+t2+2t1+I3={(x+1x)2+2(x+1x)3}12ln{(x+1x+1)+(x+1x)2+2(x+1x)1+I3nowcalcukatingI3dt(t+2)t2+2t3t+2=1kdt=1k2dkdkk2×1k(1k2)2+2(1k2)3dkk1k24k+4+2k43dkk14k+4k2+2k7k2k2dk3k22k+1dk13(k2+23k+1919)dk13{(k+13)219}dk1+133(k+13)2dk433(k+13)213dk(23)2(k+13)2=13×sin1(k+1323)=13sin1(1t+2+1323)13sin1(1x+1x+2+1323)+c

Commented by Meritguide1234 last updated on 22/Oct/18

very nice

verynice

Commented by tanmay.chaudhury50@gmail.com last updated on 22/Oct/18

thank you sir ...

thankyousir...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com