Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 46182 by Meritguide1234 last updated on 22/Oct/18

Commented by maxmathsup by imad last updated on 22/Oct/18

 we have 1−x^2  +x^4 −....=Σ_(n=0) ^∞ (−x^2 )^n  =(1/(1+x^2 )) and  cos^2 x  +cos^4 x +cos^6 x +...=cos^2 x(1+cos^2 x +cos^4 x +....)  =cos^2 x{(1/(1−cos^2 x))}=(1/(tan^2 x)) ⇒ I =  ∫_0 ^(π/4)   ((tan^2 x)/(1+x^2 ))dx by parts    I =∫_0 ^(π/4)    tan^2 x(Σ_(n=0) ^∞ (−1)^n  x^n )ex =Σ_(n=0) ^∞ (−1)^n  ∫_0 ^(π/4)  x^n  tan^2 x dt  =Σ_(n=0) ^∞  (−1)^n  A_n   with A_n =∫_0 ^(π/4)  x^n  tan^2 x dx  by parts   A_n =[(1/(n+1)) x^(n+1) tan^2 x]_0 ^(π/4)  −∫_0 ^(π/4)  (x^(n+1) /(n+1)) (2tanx)(1+tan^2 x)dx  =(1/(n+1))((π/4))^(n+1)   −(2/(n+1)) ∫_0 ^(π/4)  x^(n+1) tanx dx −(2/(n+1)) ∫_0 ^(π/4) x^(n+1) tan^3 t dt...be continued...

wehave1x2+x4....=n=0(x2)n=11+x2andcos2x+cos4x+cos6x+...=cos2x(1+cos2x+cos4x+....)=cos2x{11cos2x}=1tan2xI=0π4tan2x1+x2dxbypartsI=0π4tan2x(n=0(1)nxn)ex=n=0(1)n0π4xntan2xdt=n=0(1)nAnwithAn=0π4xntan2xdxbypartsAn=[1n+1xn+1tan2x]0π40π4xn+1n+1(2tanx)(1+tan2x)dx=1n+1(π4)n+12n+10π4xn+1tanxdx2n+10π4xn+1tan3tdt...becontinued...

Commented by maxmathsup by imad last updated on 22/Oct/18

we have 0≤x≤(π/4) ⇒ 0≤tan^2 x≤ 1 ⇒ 0≤ ((tan^2 x)/(1+x^2 )) ≤1 ⇒   0 ≤ ∫_0 ^(π/4)    ((tan^2 x)/(1+x^2 ))dx ≤ ∫_0 ^(π/4)  dx =(π/4) ⇒ 0≤ I  ≤ (π/4) .....

wehave0xπ40tan2x10tan2x1+x2100π4tan2x1+x2dx0π4dx=π40Iπ4.....

Commented by Meritguide1234 last updated on 22/Oct/18

very good

verygood

Commented by maxmathsup by imad last updated on 22/Oct/18

thank you sir.

thankyousir.

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Oct/18

N_r =(1/(1+x^2 ))    D_r =((cos^2 x)/(1−cos^2 x))=cot^2 x  ∫_0 ^(π/4) (1/((1+x^2 )))×(1/(cot^2 x))dx  ∫_0 ^(π/4) ((tan^2 x)/(1+x^2 ))dx

Nr=11+x2Dr=cos2x1cos2x=cot2x0π41(1+x2)×1cot2xdx0π4tan2x1+x2dx

Commented by tanmay.chaudhury50@gmail.com last updated on 22/Oct/18

Commented by Meritguide1234 last updated on 22/Oct/18

need more specific ...

needmorespecific...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com