All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 46186 by Saorey last updated on 22/Oct/18
pleasehelpme!S=12q1+22q2+32q3+...+n2qn=?
Commented by maxmathsup by imad last updated on 22/Oct/18
wehaveS=∑p=0np2qpletp(x)=∑p=0nxpwithx≠1⇒p′(x)=∑p=1npxp−1⇒xp′(x)=∑p=1npxp⇒p′(x)+xp″(x)=∑p=1np2xp−1⇒xp′(x)+x2p″(x)=∑p=1np2xpbutp(x)=xn+1−1x−1⇒p′(x)=nxn+1−(n+1)xn+1(x−1)2andp(2)(x)=(n(n+1)xn−n(n+1)xn−1)(x−1)2−2(x−1)(nxn+1−(n+1)xn+1)(x−1)4=(n2+n)(xn−xn−1)(x−1)−2nxn+1+2(n+1)xn−2(x−1)3=(n2+n)(xn+1−2xn+xn−1))−2nxn+1+2(n+1)xn−2(x−1)3=(n2−n)xn+1+(−2n2−2n+2n+2)xn+(n2+n)xn−1−2(x−1)3=(n2−n)xn+1−2(n2−1)xn+(n2+n)xn−1−2(x−1)3⇒S=∑p=1np2qp=qp′(q)+q2p″(q)=q(q−1)2{nqn+1−(n+1)qn+1}+q2(q−1)3{(n2−n)qn+1−2(n2−1)qn+(n2+n)qn−1−2}ifq≠1andifq=1S=12+22+32+...+n2=n(n+1)(2n+1)6.
Answered by ajfour last updated on 22/Oct/18
Sq=1+22q+32q2+....+n2qn−1S(1q−1)=1+3q+5q2+7q3+.......+(2n−1)qn−1−n2qnSq(1q−1)=q+3q2+5q3+.......+(2n−1)qn−n2qn+1S(1q−1)(1−q)=1+2q+2q2+2q3+....+2qn−1−(n−1)2qn+n2qn+1⇒(1−q)2Sq=1+2q(1−qn)1−q−(n−1)2qn+n2qn+1S=q(1−q)2[1+2q(1−qn)1−q−(n−1)2qn+n2qn+1].(thereislittleerror,ishallsoonfixit..)
Commented by Saorey last updated on 22/Oct/18
thankyou
Terms of Service
Privacy Policy
Contact: info@tinkutara.com