Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 46186 by Saorey last updated on 22/Oct/18

please help me!  S=1^2 q^1 +2^2 q^2 +3^2 q^3 +...+n^2 q^n =?

pleasehelpme!S=12q1+22q2+32q3+...+n2qn=?

Commented by maxmathsup by imad last updated on 22/Oct/18

we have S =Σ_(p=0) ^n  p^2 q^p     let p(x)=Σ_(p=0) ^n  x^p  with x≠1 ⇒  p^′ (x)=Σ_(p=1) ^n  p x^(p−1)  ⇒x p^′ (x)=Σ_(p=1) ^n  px^p  ⇒p^′ (x)+x p^(′′) (x)=Σ_(p=1) ^n p^2 x^(p−1)  ⇒  xp^′ (x) +x^2 p^(′′) (x)=Σ_(p=1) ^n p^2 x^p   but p(x)=((x^(n+1) −1)/(x−1)) ⇒  p^′ (x)=((nx^(n+1) −(n+1)x^n  +1)/((x−1)^2 )) and   p^((2)) (x) =(((n(n+1)x^n −n(n+1)x^(n−1) )(x−1)^2  −2(x−1)(nx^(n+1) −(n+1)x^n  +1))/((x−1)^4 ))  =(((n^2 +n)(x^n −x^(n−1) )(x−1)−2n x^(n+1) +2(n+1)x^n −2)/((x−1)^3 ))  =(((n^2  +n)(x^(n+1) −2x^n  +x^(n−1)) )−2n x^(n+1) +2(n+1)x^n −2)/((x−1)^3 ))  =(((n^2 −n)x^(n+1)  +(−2n^2 −2n +2n+2)x^n  +(n^2  +n)x^(n−1) −2)/((x−1)^3 ))  =(((n^2 −n)x^(n+1)  −2(n^2 −1)x^n  +(n^2  +n)x^(n−1) −2)/((x−1)^3 )) ⇒  S =Σ_(p=1) ^n p^2 q^p  =qp^′ (q)+q^2 p^(′′) (q)  =(q/((q−1)^2 )){nq^(n+1) −(n+1)q^n  +1} +(q^2 /((q−1)^3 )){(n^2 −n)q^(n+1) −2(n^2 −1)q^n +(n^2  +n)q^(n−1) −2} if  q≠1 and if q=1  S =1^2  +2^2  +3^2  +...+n^2 =((n(n+1)(2n+1))/6) .

wehaveS=p=0np2qpletp(x)=p=0nxpwithx1p(x)=p=1npxp1xp(x)=p=1npxpp(x)+xp(x)=p=1np2xp1xp(x)+x2p(x)=p=1np2xpbutp(x)=xn+11x1p(x)=nxn+1(n+1)xn+1(x1)2andp(2)(x)=(n(n+1)xnn(n+1)xn1)(x1)22(x1)(nxn+1(n+1)xn+1)(x1)4=(n2+n)(xnxn1)(x1)2nxn+1+2(n+1)xn2(x1)3=(n2+n)(xn+12xn+xn1))2nxn+1+2(n+1)xn2(x1)3=(n2n)xn+1+(2n22n+2n+2)xn+(n2+n)xn12(x1)3=(n2n)xn+12(n21)xn+(n2+n)xn12(x1)3S=p=1np2qp=qp(q)+q2p(q)=q(q1)2{nqn+1(n+1)qn+1}+q2(q1)3{(n2n)qn+12(n21)qn+(n2+n)qn12}ifq1andifq=1S=12+22+32+...+n2=n(n+1)(2n+1)6.

Answered by ajfour last updated on 22/Oct/18

(S/q)= 1+2^2 q+3^2 q^2 +....+n^2 q^( n−1)   S((1/q)−1)= 1+3q+5q^2 +7q^3 +...                  ....+(2n−1)q^( n−1) −n^2 q^n   Sq((1/q)−1)=q+3q^2 +5q^3 +...                  ....+(2n−1)q^( n) −n^2 q^(n+1)   S((1/q)−1)(1−q)=1+2q+2q^2 +2q^3 +..         ..+2q^( n−1) −(n−1)^2 q^( n) +n^2 q^( n+1)   ⇒ (((1−q)^2 S)/q)=1+((2q(1−q^( n) ))/(1−q))                     −(n−1)^2 q^( n) +n^2 q^( n+1)     S = (q/((1−q)^2 ))[1+((2q(1−q^( n) ))/(1−q))                  −(n−1)^2 q^n +n^2 q^(n+1) ].     (there is little error, i shall          soon fix it..)

Sq=1+22q+32q2+....+n2qn1S(1q1)=1+3q+5q2+7q3+.......+(2n1)qn1n2qnSq(1q1)=q+3q2+5q3+.......+(2n1)qnn2qn+1S(1q1)(1q)=1+2q+2q2+2q3+....+2qn1(n1)2qn+n2qn+1(1q)2Sq=1+2q(1qn)1q(n1)2qn+n2qn+1S=q(1q)2[1+2q(1qn)1q(n1)2qn+n2qn+1].(thereislittleerror,ishallsoonfixit..)

Commented by Saorey last updated on 22/Oct/18

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com