Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 46187 by annika0209 last updated on 22/Oct/18

Σ_(n=1) ^∞ (1/(n×n^(1/n) ))=?        please help me!!!!

n=11n×n1n=?pleasehelpme!!!!

Commented by maxmathsup by imad last updated on 22/Oct/18

let  S_n =Σ_(k=1) ^n  (1/(k k^(1/k) ))   the sequence u_k =(1/(k.k^(1/k) )) is decreasing ⇒    ∫_k ^(k+1)   (dt/(t t^(1/t) )) ≤ f(k) ≤ ∫_(k−1) ^k  (dt/(t t^(1/t) )) ⇒ Σ_(k=2) ^n  ∫_k ^(k+1)  (dt/(t .t^(1/t) ))≤Σ_(k=2) ^n  (1/(k.k^(1/k) )) ≤ Σ_(k=2) ^n  ∫_(k−1) ^k  (dt/(tt^(1/t) )) ⇒  ∫_2 ^(n+1)    (dt/(t.t^(1/t) )) ≤ S_n −1 ≤ ∫_1 ^n    (dt/(t t^(1/t) )) ⇒1+ ∫_2 ^(+∞)   (dt/(t.t^(1/t) )) ≤lim_(n→+∞)  S_n  ≤1+∫_1 ^(+∞)   (dt/(t.t^(1/t) ))  but ∫_1 ^(+∞)    (dt/(t t^(1/t) )) =∫_1 ^(+∞)   (dt/t^(1+(1/t)) ) =∫_1 ^(+∞)    (dt/e^((1+(1/t))ln(t)) )  = ∫_1 ^(+∞)   e^(−(1+(1/t))ln(t)) dt changement t =(1/x) give  ∫_1 ^(+∞)   e^(−(1+(1/t))ln(t)) dt = −∫_0 ^1   e^((1+x)ln(x))  (−(dx/x^2 ))= ∫_0 ^1    (e^((1+x)ln(x)) /x^2 )dx  = ∫_0 ^1     ((x x^x )/x^2 )dx = ∫_0 ^1   x^(x−1)  dx  ....be continued...

letSn=k=1n1kk1kthesequenceuk=1k.k1kisdecreasingkk+1dttt1tf(k)k1kdttt1tk=2nkk+1dtt.t1tk=2n1k.k1kk=2nk1kdttt1t2n+1dtt.t1tSn11ndttt1t1+2+dtt.t1tlimn+Sn1+1+dtt.t1tbut1+dttt1t=1+dtt1+1t=1+dte(1+1t)ln(t)=1+e(1+1t)ln(t)dtchangementt=1xgive1+e(1+1t)ln(t)dt=01e(1+x)ln(x)(dxx2)=01e(1+x)ln(x)x2dx=01xxxx2dx=01xx1dx....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com