Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 4624 by sanusihammed last updated on 14/Feb/16

Answered by Yozzii last updated on 15/Feb/16

(12) The equation of motion of the particle  is given as              (d/ds)((v^2 /2))=−g−kv^2 .  v is a function of s as s and v are   related to each other by time t.  ∴ (d/ds)((v^2 /2))=(1/2)×2v(dv/ds)=v(dv/ds).  ∴ v(dv/ds)=−g−kv^2 =−(g+kv^2 )      (∗)  At the maximum height s=h,v=0 and  at v=u,s=0.  ∴ Separating the variables of (∗) and  integrating between the limits   v=0,v=u and s=h,s=0, we get  ∫_u ^0 (v/(g+kv^2 ))dv=∫_0 ^h −1ds  (1/(2k))∫_u ^0 ((2kv)/(g+kv^2 ))dv=−s∣_0 ^h     (k≠0)  (1/(2k))log_e (g+kv^2 )∣_u ^0 =−h=0  h=((−1)/(2k))(log_e (g)−log_e (g+ku^2 ))  h=(1/(2k))log_e (((g+ku^2 )/g))  (k≠0,g+ku^2 >0⇒k>−g/u^2 )  h=(1/(2k))log_e (1+((ku^2 )/g))       (13)(i) Let a be the acceleration of the   particle in ms^(−2) . a is given as a function  of time t in the form a=t+3.   Since a=(dv/dt)⇒∫_v_0  ^v dv=∫_t_0  ^t adt  ⇒v∣_v_0  ^v =∫_t_0  ^t (t+3)dt  v−v_0 =0.5t^2 +3t∣_t_0  ^t   v=v_0 +0.5t^2 +3t−0.5t_0 ^2 −3t_0   At t_0 =0,v_0 =2.  ∴v=2+3t+0.5t^2 −0−0  v=2+3t+(1/2)t^2     (t≥0).  At t=2, v=2+3×2+(1/2)×4=10ms^(−1)   (ii) Since v=(ds/dt)⇒∫_s_0  ^s ds=∫_t_0  ^t vdt.  At t_0 =0,s_0 =0.  ∴∫_0 ^s ds=∫_0 ^t (2+3t+(1/2)t^2 )dt  s∣_0 ^s =2t+(3/2)t^2 +(1/6)t^3 ∣_0 ^t   s−0=2t+(3/2)t^2 +(1/6)t^3 −0  s=t(2+(3/2)t+(1/6)t^2 )  (t≥0)  s is an increasing function for all t≥0  since (ds/dt)=v=2+3t+0.5t^2 ≥2+0+0=2>0.  The particle moves along a straight   line so that since s≥0, the distance=displacement.  At t=2 s,s(2)=2(2+3+(2/3))=((34)/3)m.  At t=4 s, s(4)=4(2+6+(8/3))=((128)/3) m   ∴ required distance=s(4)−s(2)=((128−34)/3)=((94)/3)m

$$\left(\mathrm{12}\right)\:{The}\:{equation}\:{of}\:{motion}\:{of}\:{the}\:{particle} \\ $$$${is}\:{given}\:{as} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{{d}}{{ds}}\left(\frac{{v}^{\mathrm{2}} }{\mathrm{2}}\right)=−{g}−{kv}^{\mathrm{2}} . \\ $$$${v}\:{is}\:{a}\:{function}\:{of}\:{s}\:{as}\:{s}\:{and}\:{v}\:{are}\: \\ $$$${related}\:{to}\:{each}\:{other}\:{by}\:{time}\:{t}. \\ $$$$\therefore\:\frac{{d}}{{ds}}\left(\frac{{v}^{\mathrm{2}} }{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}{v}\frac{{dv}}{{ds}}={v}\frac{{dv}}{{ds}}. \\ $$$$\therefore\:{v}\frac{{dv}}{{ds}}=−{g}−{kv}^{\mathrm{2}} =−\left({g}+{kv}^{\mathrm{2}} \right)\:\:\:\:\:\:\left(\ast\right) \\ $$$${At}\:{the}\:{maximum}\:{height}\:{s}={h},{v}=\mathrm{0}\:{and} \\ $$$${at}\:{v}={u},{s}=\mathrm{0}. \\ $$$$\therefore\:{Separating}\:{the}\:{variables}\:{of}\:\left(\ast\right)\:{and} \\ $$$${integrating}\:{between}\:{the}\:{limits}\: \\ $$$${v}=\mathrm{0},{v}={u}\:{and}\:{s}={h},{s}=\mathrm{0},\:{we}\:{get} \\ $$$$\int_{{u}} ^{\mathrm{0}} \frac{{v}}{{g}+{kv}^{\mathrm{2}} }{dv}=\int_{\mathrm{0}} ^{{h}} −\mathrm{1}{ds} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{k}}\int_{{u}} ^{\mathrm{0}} \frac{\mathrm{2}{kv}}{{g}+{kv}^{\mathrm{2}} }{dv}=−{s}\mid_{\mathrm{0}} ^{{h}} \:\:\:\:\left({k}\neq\mathrm{0}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{k}}{log}_{{e}} \left({g}+{kv}^{\mathrm{2}} \right)\mid_{{u}} ^{\mathrm{0}} =−{h}=\mathrm{0} \\ $$$${h}=\frac{−\mathrm{1}}{\mathrm{2}{k}}\left({log}_{{e}} \left({g}\right)−{log}_{{e}} \left({g}+{ku}^{\mathrm{2}} \right)\right) \\ $$$${h}=\frac{\mathrm{1}}{\mathrm{2}{k}}{log}_{{e}} \left(\frac{{g}+{ku}^{\mathrm{2}} }{{g}}\right)\:\:\left({k}\neq\mathrm{0},{g}+{ku}^{\mathrm{2}} >\mathrm{0}\Rightarrow{k}>−{g}/{u}^{\mathrm{2}} \right) \\ $$$${h}=\frac{\mathrm{1}}{\mathrm{2}{k}}{log}_{{e}} \left(\mathrm{1}+\frac{{ku}^{\mathrm{2}} }{{g}}\right)\:\:\: \\ $$$$ \\ $$$$\left(\mathrm{13}\right)\left({i}\right)\:{Let}\:{a}\:{be}\:{the}\:{acceleration}\:{of}\:{the}\: \\ $$$${particle}\:{in}\:{ms}^{−\mathrm{2}} .\:{a}\:{is}\:{given}\:{as}\:{a}\:{function} \\ $$$${of}\:{time}\:{t}\:{in}\:{the}\:{form}\:{a}={t}+\mathrm{3}.\: \\ $$$${Since}\:{a}=\frac{{dv}}{{dt}}\Rightarrow\int_{{v}_{\mathrm{0}} } ^{{v}} {dv}=\int_{{t}_{\mathrm{0}} } ^{{t}} {adt} \\ $$$$\Rightarrow{v}\mid_{{v}_{\mathrm{0}} } ^{{v}} =\int_{{t}_{\mathrm{0}} } ^{{t}} \left({t}+\mathrm{3}\right){dt} \\ $$$${v}−{v}_{\mathrm{0}} =\mathrm{0}.\mathrm{5}{t}^{\mathrm{2}} +\mathrm{3}{t}\mid_{{t}_{\mathrm{0}} } ^{{t}} \\ $$$${v}={v}_{\mathrm{0}} +\mathrm{0}.\mathrm{5}{t}^{\mathrm{2}} +\mathrm{3}{t}−\mathrm{0}.\mathrm{5}{t}_{\mathrm{0}} ^{\mathrm{2}} −\mathrm{3}{t}_{\mathrm{0}} \\ $$$${At}\:{t}_{\mathrm{0}} =\mathrm{0},{v}_{\mathrm{0}} =\mathrm{2}. \\ $$$$\therefore{v}=\mathrm{2}+\mathrm{3}{t}+\mathrm{0}.\mathrm{5}{t}^{\mathrm{2}} −\mathrm{0}−\mathrm{0} \\ $$$${v}=\mathrm{2}+\mathrm{3}{t}+\frac{\mathrm{1}}{\mathrm{2}}{t}^{\mathrm{2}} \:\:\:\:\left({t}\geqslant\mathrm{0}\right). \\ $$$${At}\:{t}=\mathrm{2},\:{v}=\mathrm{2}+\mathrm{3}×\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{4}=\mathrm{10}{ms}^{−\mathrm{1}} \\ $$$$\left({ii}\right)\:{Since}\:{v}=\frac{{ds}}{{dt}}\Rightarrow\int_{{s}_{\mathrm{0}} } ^{{s}} {ds}=\int_{{t}_{\mathrm{0}} } ^{{t}} {vdt}. \\ $$$${At}\:{t}_{\mathrm{0}} =\mathrm{0},{s}_{\mathrm{0}} =\mathrm{0}. \\ $$$$\therefore\int_{\mathrm{0}} ^{{s}} {ds}=\int_{\mathrm{0}} ^{{t}} \left(\mathrm{2}+\mathrm{3}{t}+\frac{\mathrm{1}}{\mathrm{2}}{t}^{\mathrm{2}} \right){dt} \\ $$$${s}\mid_{\mathrm{0}} ^{{s}} =\mathrm{2}{t}+\frac{\mathrm{3}}{\mathrm{2}}{t}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{6}}{t}^{\mathrm{3}} \mid_{\mathrm{0}} ^{{t}} \\ $$$${s}−\mathrm{0}=\mathrm{2}{t}+\frac{\mathrm{3}}{\mathrm{2}}{t}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{6}}{t}^{\mathrm{3}} −\mathrm{0} \\ $$$${s}={t}\left(\mathrm{2}+\frac{\mathrm{3}}{\mathrm{2}}{t}+\frac{\mathrm{1}}{\mathrm{6}}{t}^{\mathrm{2}} \right)\:\:\left({t}\geqslant\mathrm{0}\right) \\ $$$${s}\:{is}\:{an}\:{increasing}\:{function}\:{for}\:{all}\:{t}\geqslant\mathrm{0} \\ $$$${since}\:\frac{{ds}}{{dt}}={v}=\mathrm{2}+\mathrm{3}{t}+\mathrm{0}.\mathrm{5}{t}^{\mathrm{2}} \geqslant\mathrm{2}+\mathrm{0}+\mathrm{0}=\mathrm{2}>\mathrm{0}. \\ $$$${The}\:{particle}\:{moves}\:{along}\:{a}\:{straight}\: \\ $$$${line}\:{so}\:{that}\:{since}\:{s}\geqslant\mathrm{0},\:{the}\:{distance}={displacement}. \\ $$$${At}\:{t}=\mathrm{2}\:{s},{s}\left(\mathrm{2}\right)=\mathrm{2}\left(\mathrm{2}+\mathrm{3}+\frac{\mathrm{2}}{\mathrm{3}}\right)=\frac{\mathrm{34}}{\mathrm{3}}{m}. \\ $$$${At}\:{t}=\mathrm{4}\:{s},\:{s}\left(\mathrm{4}\right)=\mathrm{4}\left(\mathrm{2}+\mathrm{6}+\frac{\mathrm{8}}{\mathrm{3}}\right)=\frac{\mathrm{128}}{\mathrm{3}}\:{m}\: \\ $$$$\therefore\:{required}\:{distance}={s}\left(\mathrm{4}\right)−{s}\left(\mathrm{2}\right)=\frac{\mathrm{128}−\mathrm{34}}{\mathrm{3}}=\frac{\mathrm{94}}{\mathrm{3}}{m} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com