Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 46308 by ajfour last updated on 23/Oct/18

Commented by ajfour last updated on 23/Oct/18

O is the centre of circle, C the  centre of the unit square.   If (i) α=tan^(−1) (4/3),  (ii) α=60°,   find radius R.

Oisthecentreofcircle,Cthecentreoftheunitsquare.If(i)α=tan143,(ii)α=60°,findradiusR.

Answered by MrW3 last updated on 23/Oct/18

Commented by MrW3 last updated on 23/Oct/18

let a=1 and b=(a/2)  OQ=R−b  CQ=b  OC=(√(b^2 +(R−b)^2 ))  OT=2b−R  OP=R  PT=(√(R^2 −(2b−R)^2 ))  CQ−PT=b−(√(R^2 −(2b−R)^2 ))  CP^2 =b^2 +[b−(√(R^2 −(2b−R)^2 ))]^2   =2b[2R−(√(4b(R−b)))−b]    R^2 =b^2 +(R−b)^2 +2b[2R−(√(4b(R−b)))−b]−2(√(2b[b^2 +(R−b)^2 ][2R−(√(4b(R−b)))−b])) cos α  0=2b(R+b)−2b(√(4b(R−b)))−2b^2 −2(√(2b[b^2 +(R−b)^2 ][2R−(√(4b(R−b)))−b])) cos α  let λ=(R/b)=((2R)/a)=2R  λ−2(√(λ−1))−(√(2[1+(λ−1)^2 ][2λ−2(√(λ−1))−1])) cos α=0  with α=60°  2λ−4(√(λ−1))−(√(2[1+(λ−1)^2 ][2λ−2(√(λ−1))−1]))=0  ⇒λ≈1.0636  ⇒R≈0.5318    with α=tan^(−1) (4/3)  ⇒λ≈1.0196  ⇒R≈0.5098

leta=1andb=a2OQ=RbCQ=bOC=b2+(Rb)2OT=2bROP=RPT=R2(2bR)2CQPT=bR2(2bR)2CP2=b2+[bR2(2bR)2]2=2b[2R4b(Rb)b]R2=b2+(Rb)2+2b[2R4b(Rb)b]22b[b2+(Rb)2][2R4b(Rb)b]cosα0=2b(R+b)2b4b(Rb)2b222b[b2+(Rb)2][2R4b(Rb)b]cosαletλ=Rb=2Ra=2Rλ2λ12[1+(λ1)2][2λ2λ11]cosα=0withα=60°2λ4λ12[1+(λ1)2][2λ2λ11]=0λ1.0636R0.5318withα=tan143λ1.0196R0.5098

Commented by ajfour last updated on 23/Oct/18

correct answer sir, thank you!

correctanswersir,thankyou!

Answered by ajfour last updated on 23/Oct/18

Commented by ajfour last updated on 23/Oct/18

α = θ+φ  tan θ = ((a/2)/(R−(a/2)))  let  λ=(R/a)    ⇒ tan θ = (1/(2λ−1)) =(1/t^2 )   (say)  tan φ= ((PM)/(CM)) = (((√(R^2 −(a−R)^2 ))−(a/2))/(a/2))             = 2(√(2λ−1))−1 = 2t−1  let  m=tan α  ⇒  m=tan (θ+φ)  m−mtan θ tan φ = tan θ+tan φ  m−((m(2t−1))/t^2 ) = (1/t^2 )+2t−1  ⇒  mt^2 −2mt+m=1+2t^3 −t^2   2t^3 −(1+m)t^2 +2mt−(m−1)=0  for  α=tan^(−1) (4/3)   ,  m=(4/3)  2t^3 −((7t^2 )/3)+((8t)/3)−(1/3)=0  or    6t^3 −7t^2 +8t−1 = 0     t ≈ 0.14012    λ =(R/a)= ((t^2 +1)/2)      R ≈ 0.5098 .

α=θ+ϕtanθ=a/2Ra2letλ=Ratanθ=12λ1=1t2(say)tanϕ=PMCM=R2(aR)2a2a/2=22λ11=2t1letm=tanαm=tan(θ+ϕ)mmtanθtanϕ=tanθ+tanϕmm(2t1)t2=1t2+2t1mt22mt+m=1+2t3t22t3(1+m)t2+2mt(m1)=0forα=tan143,m=432t37t23+8t313=0or6t37t2+8t1=0t0.14012λ=Ra=t2+12R0.5098.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com