Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 46323 by MJS last updated on 24/Oct/18

(1a)  ∫(dx/(e^(5x) +e^(3x) +e^(2x) ))=?  (1b)  ∫(dx/(e^(5x) −e^(3x) −e^(2x) ))=?  (2a)  ∫(dx/(x^(5/3) +x^(3/5) ))=?  (2b)  ∫(dx/(x^(5/3) −x^(3/5) ))=?

(1a)dxe5x+e3x+e2x=?(1b)dxe5xe3xe2x=?(2a)dxx53+x35=?(2b)dxx53x35=?

Commented by maxmathsup by imad last updated on 24/Oct/18

(2a) we use the changement x=t^(15)  ⇒  I = ∫   ((15 t^(14) dt)/((t^(15) )^(5/3)  +(t^(15) )^(3/5) )) = ∫   ((15 t^(14) )/(t^(25)  + t^9 )) dt =15 ∫   (t^5 /(t^(16)  +1)) dt  but  t^(16)  +1 =(t^8 )^2  +1 =(t^8  +1)^2  −2t^8  =(t^8  +1−(√2)t^4 )(t^8  +1+(√2)t^4 ) ⇒  (1/((t^8  −(√2)t^4  +1)(t^8  +(√2)t^4  +1))) =(1/λ){ (1/(t^8  +(√2)t^4  +1)) −(1/(t^8  −(√2)t^4  +1))}  λ=t^8 −(√2)t^4   +1−t^8 −(√2)t^4 −1 = −2(√2)t^4  ⇒  F(x)=(t^5 /(t^(16)  +1)) =−(1/(2(√2))){ (t/(t^8  +(√2)t^4  +1)) −(t/(t^8  −(√2)t^4  +1))} ⇒  I =−((15)/(2(√2))) { ∫    ((tdt)/(t^8  +(√2)t^4  +1)) −∫   ((tdt)/(t^8  −(√2) t^4  +1))} also   t^8  +(√2)t^4  +1 =u^2  +(√2)u +1  (u=t^4 )  =u^2  +2 ((√2)/2)u +(1/2) +(1/2) =(u +((√2)/2))^2  +(1/2) =(t^4  +((√2)/2))^2  +(1/2) ⇒  ∫    ((t dt)/(t^8  +(√2)t^4  +1)) =∫    (t/((t^4  +((√2)/2))^2  +(1/2))) dt   changement t^4 =α give  t =α^(1/4)   ∫ (....)dt = ∫    (α^(1/4) /((α+((√2)/2))^2  +(1/2))) (1/4) α^((1/4)−1)  dα  = ∫        (dα/((√α){  (α+((√2)/2))^2  +(1/2)})) ....be continued....

(2a)weusethechangementx=t15I=15t14dt(t15)53+(t15)35=15t14t25+t9dt=15t5t16+1dtbutt16+1=(t8)2+1=(t8+1)22t8=(t8+12t4)(t8+1+2t4)1(t82t4+1)(t8+2t4+1)=1λ{1t8+2t4+11t82t4+1}λ=t82t4+1t82t41=22t4F(x)=t5t16+1=122{tt8+2t4+1tt82t4+1}I=1522{tdtt8+2t4+1tdtt82t4+1}alsot8+2t4+1=u2+2u+1(u=t4)=u2+222u+12+12=(u+22)2+12=(t4+22)2+12tdtt8+2t4+1=t(t4+22)2+12dtchangementt4=αgivet=α14(....)dt=α14(α+22)2+1214α141dα=dαα{(α+22)2+12}....becontinued....

Answered by tanmay.chaudhury50@gmail.com last updated on 24/Oct/18

2a)∫(dx/(x^a +x^b ))   [here ab=1   b=(5/3)   a=(3/5)]  ∫(dx/(x^b (x^(a−b) +1)))  ∫x^(−b) (1−x^t +x^(2t) −x^(3t) +...)dx   [ t=a−b  =  ∫{x^(−b) −x^(t−b) +x^(2t−b) −x^(3t−b) +.. }dx  =(x^(−b+1) /(−b+1))−(x^(t−b+1) /(t−b+1))+(x^(2t−b+1) /(2t−b+1))−....  pls check  may i proceed this way...

2a)dxxa+xb[hereab=1b=53a=35]dxxb(xab+1)xb(1xt+x2tx3t+...)dx[t=ab={xbxtb+x2tbx3tb+..}dx=xb+1b+1xtb+1tb+1+x2tb+12tb+1....plscheckmayiproceedthisway...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com