Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 46344 by MrW3 last updated on 24/Oct/18

Commented by MrW3 last updated on 25/Oct/18

A rod of mass M and length l is supported  at one end through a hinge. the other free  end is hold horizontally by a rope  as shown. the rope has a mass ρ per  unit length.  Find the max. tension in the rope.

ArodofmassMandlengthlissupportedatoneendthroughahinge.theotherfreeendisholdhorizontallybyaropeasshown.theropehasamassρperunitlength.Findthemax.tensionintherope.

Commented by ajfour last updated on 24/Oct/18

Commented by ajfour last updated on 24/Oct/18

  Tdθ = ρg((dy/(sin θ)))cos θ      ....(i)    Tcos θ = (T+dT)cos (θ+dθ)  ...(ii)    From  eq.(ii)     Tcos θ = T_0 cos 𝛃 = T_e cos 𝛂 = c  ________________________  ⇒ cos α = (c/T_e )  ,  cos β = (c/T_0 )   ..(I)  ________________________  using (ii) in  (i)    ∫_0 ^(  h) ρgdy = c∫_α ^(  β) sec θ tan θ dθ   ⇒  c(sec β−sec α)= ρgh    ________________________  ⇒   T_0 −T_e =𝛒gh    ...... (II)  ________________________    Torque about left end only on     bridge (excluding rope):      T_e Lsin 𝛂 = ((MgL)/2)      ⇒ (√(T_e ^(  2) −c^2 )) = ((Mg)/2)  ⇒  T_e = (√(c^2 +(((Mg)/2))^2 ))     ....(A)  And using (A) in (II)     T_0  =𝛒gh+(√(c^2 +(((Mg)/2))^2 ))  ...(B)  Torque about left end of bridge,      on bridge+rope :      _____________________     T_0 hcos β = ∫_0 ^(  l) (ρgdl)x+((MgL)/2)  ..(iii)     _____________________     but  from (i)        ρgdx = Tdθ = csec θdθ  ⇒  ∫_0 ^(  x) ρgdx = c∫_β ^(  θ) sec θdθ  ⇒   ρgx = cln (((sec θ+tan θ)/(sec β+tan β))) ..(iii)  from (iii)  ⇒  ch = ∫_β ^(  α) (Tsec θdθ)x+((MgL)/2)  using  (iii)     ch = c^2 ∫_β ^(  α) (((sec^2 θdθ)ln (..))/(ρg))+((MgL)/2)  ⇒ ch−((MgL)/2) = (c^2 /(ρg))[(tan θ)ln (((sec θ+tan θ)/(sec β+tan β)))∣_β ^α              −∫_β ^(  α) tan θsec θdθ ]  ⇒  ((ρg)/c^2 )(ch−((MgL)/2))= (tan α)ln (((sec α+tan α)/(sec β+tan β)))                        + sec β−sec α     but      c(sec β−sec α)= ρgh      tan α = (√(sec^2 α−1)) =(√((T_e ^(  2) /c^2 )−1))                = ((Mg)/(2c))   ;  hence  ⇒ −((ρg)/(2c^2 ))(MgL)=(((Mg)/(2c)))ln [((cos β)/(cos α))×((1+sin α)/(1+sin β))]  ⇒ ln [((T_e +T_e sin α)/(T_0 +T_0 sin β))]= −((ρgL)/c)  ⇒  ln [((T_0 +(√(T_0 ^(  2) −c^2 )))/(T_e +(√(T_e ^(  2) −c^2 )))) ]= ((ρgL)/c)  ________________________  Answer :   ln(((T_0 +(√(T_0 ^(  2) −c^2 )))/(T_e +((Mg)/2)))) = ((𝛒gL)/c)  −−−−−−−−−−−−−−−     where  [see (A) & (B)]    T_e = (√(c^2 +(((Mg)/2))^2 ))          T_0 = 𝛒gh+(√(c^2 +(((Mg)/2))^2 ))   ________________________.

Tdθ=ρg(dysinθ)cosθ....(i)Tcosθ=(T+dT)cos(θ+dθ)...(ii)Fromeq.(ii)Tcosθ=T0cosβ=Tecosα=c________________________cosα=cTe,cosβ=cT0..(I)________________________using(ii)in(i)0hρgdy=cαβsecθtanθdθc(secβsecα)=ρgh________________________T0Te=ρgh......(II)________________________Torqueaboutleftendonlyonbridge(excludingrope):TeLsinα=MgL2Te2c2=Mg2Te=c2+(Mg2)2....(A)Andusing(A)in(II)T0=ρgh+c2+(Mg2)2...(B)Torqueaboutleftendofbridge,onbridge+rope:_____________________T0hcosβ=0l(ρgdl)x+MgL2..(iii)_____________________butfrom(i)ρgdx=Tdθ=csecθdθ0xρgdx=cβθsecθdθρgx=cln(secθ+tanθsecβ+tanβ)..(iii)from(iii)ch=βα(Tsecθdθ)x+MgL2using(iii)ch=c2βα(sec2θdθ)ln(..)ρg+MgL2chMgL2=c2ρg[(tanθ)ln(secθ+tanθsecβ+tanβ)βαβαtanθsecθdθ]ρgc2(chMgL2)=(tanα)ln(secα+tanαsecβ+tanβ)+secβsecαbutc(secβsecα)=ρghtanα=sec2α1=Te2c21=Mg2c;henceρg2c2(MgL)=(Mg2c)ln[cosβcosα×1+sinα1+sinβ]ln[Te+TesinαT0+T0sinβ]=ρgLcln[T0+T02c2Te+Te2c2]=ρgLc________________________Answer:ln(T0+T02c2Te+Mg2)=ρgLcwhere[see(A)&(B)]Te=c2+(Mg2)2T0=ρgh+c2+(Mg2)2________________________.

Commented by ajfour last updated on 24/Oct/18

T_0 = ρgh+(√(c^2 +(((Mg)/2))^2 ))  And for c  ρgh+(√(c^2 +(((Mg)/2))^2 ))+  (√((ρgh+(√(c^2 +(((Mg)/2))^2 )) )^2 −c^2 ))    = [(√(c^2 +(((Mg)/2))^2 ))+((Mg)/2)]e^((ρgL)/c)     If further i let   λ=(c/((Mg/2)))  ;  μ=((ρgh)/((Mg/2))) ; m=(L/h)  ⇒ λln (((μ+(√(λ^2 +1))+(√((μ+(√(λ^2 +1)) )^2 −λ^2 )))/(√(λ^2 +1))) )           = μm    T_0  = (μ+(√(λ^2 +1)))((Mg)/2)   for  L=4 ,   h=3,   (ρ_B /ρ) = 50   (ρ_B /ρ) = ((Mg)/(ρgL)) = 2×(((Mg/2))/(ρgh))×(h/L)=(2/(μm))  ⇒ 50=((3×2)/(4μ)) ⇒ μ=(3/(100)) =0.03      with m=(L/h)=(4/3)  λ=1.3664  ,  T_(max) =T_0 ≈ 1.723(((Mg)/2)) .

T0=ρgh+c2+(Mg2)2Andforcρgh+c2+(Mg2)2+(ρgh+c2+(Mg2)2)2c2=[c2+(Mg2)2+Mg2]eρgLcIffurtheriletλ=c(Mg/2);μ=ρgh(Mg/2);m=Lhλln(μ+λ2+1+(μ+λ2+1)2λ2λ2+1)=μmT0=(μ+λ2+1)Mg2forL=4,h=3,ρBρ=50ρBρ=MgρgL=2×(Mg/2)ρgh×hL=2μm50=3×24μμ=3100=0.03withm=Lh=43λ=1.3664,Tmax=T01.723(Mg2).

Commented by MrW3 last updated on 07/Nov/18

your answer is correct sir!  thank you very much.

youransweriscorrectsir!thankyouverymuch.

Answered by MrW3 last updated on 24/Oct/18

Commented by MrW3 last updated on 25/Oct/18

T=tension in rope  T_H =horizontal component of T=const  M=ρ_B l  p=((2lρ)/M)=((2ρ)/ρ_M ), q=((2hρ)/M)=((2hρ)/(lρ_B )), λ=tan α    at point B:  T_B  sin α=((Mg)/2)  T_H =T_B  cos α=((Mg)/(2 tan α))  Eqn. of rope (catenary) in xy−system:  y=a cosh (x/a)  with a=(T_H /(ρg))=(M/(2ρ tan α))    (dy/dx)=tan θ=sinh (x/a)    at point B:  tan α=sinh (e/a)  e=a sinh^(−1)  (tan α)  f=a cosh (e/a)=a cosh [sinh^(−1)  (tan α)]    at point A:  f+h=a cosh ((e+l)/a)  ⇒a cosh [sinh^(−1)  (tan α)]+h=a cosh [(l/a)+sinh^(−1)  (tan α)]  ⇒cosh [sinh^(−1)  (tan α)]+(h/a)=cosh [(l/a)+sinh^(−1)  (tan α)]  ⇒cosh [sinh^(−1)  (tan α)]+(h/a)=cosh ((l/a)) cosh [sinh^(−1)  (tan α)]+sinh ((l/a)) tan α  ⇒[cosh ((l/a))−1] cosh [sinh^(−1)  (tan α)]+sinh ((l/a)) tan α=(h/a)  ⇒[cosh (((2lρ tan α)/M))−1] (√(1+tan^2  α))+sinh (((2lρ tan α)/M)) tan α=((2hρ tan α)/M)  ⇒(√(1+λ^2 ))[cosh (pλ)−1]+λ[sinh (pλ) −q]=0   ...(i)  ⇒λ=f(p,q) (only numerically)    max. T=T_A =(T_H /(cos θ_A ))=((Mg)/(2λ))(√(1+tan^2  θ_A ))  tan θ_A =sinh ((e+l)/a)=sinh [((2lρ tan α)/M)+sinh^(−1)  (tan α)]  =sinh (pλ+sinh^(−1)  λ)=(√(1+λ^2 )) sinh (pλ)+λ cosh (pλ)  tan^2  θ_A =(1+λ^2 )sinh^2  (pλ)+λ^2  cosh^2  (pλ)+2λ(√(1+λ^2 )) sinh (pλ) cosh (pλ)  =((1/2)+λ^2 )cosh (2pλ)+λ(√(1+λ^2 )) sinh (2pλ)−(1/2)  1+tan^2  θ_A =(1/2)+((1/2)+λ^2 )cosh (2pλ)+λ(√(1+λ^2 )) sinh (2pλ)    ⇒max. T=((Mg)/(2λ))(√((1/2)+((1/2)+λ^2 )cosh (2pλ)+λ(√(1+λ^2 )) sinh (2pλ)))   ...(ii)    example: h=3m, l=4m, (ρ_B /ρ)=50  ⇒λ=tan α=0.7318 from (i)  ⇒max. T=1.7233×((Mg)/2) from (ii)    in case that rope is massless, we have  λ=tan α=(3/4)=0.75  T=(5/3)×((Mg)/2)=1.6667×((Mg)/2)

T=tensioninropeTH=horizontalcomponentofT=constM=ρBlp=2lρM=2ρρM,q=2hρM=2hρlρB,λ=tanαatpointB:TBsinα=Mg2TH=TBcosα=Mg2tanαEqn.ofrope(catenary)inxysystem:y=acoshxawitha=THρg=M2ρtanαdydx=tanθ=sinhxaatpointB:tanα=sinheae=asinh1(tanα)f=acoshea=acosh[sinh1(tanα)]atpointA:f+h=acoshe+laacosh[sinh1(tanα)]+h=acosh[la+sinh1(tanα)]cosh[sinh1(tanα)]+ha=cosh[la+sinh1(tanα)]cosh[sinh1(tanα)]+ha=cosh(la)cosh[sinh1(tanα)]+sinh(la)tanα[cosh(la)1]cosh[sinh1(tanα)]+sinh(la)tanα=ha[cosh(2lρtanαM)1]1+tan2α+sinh(2lρtanαM)tanα=2hρtanαM1+λ2[cosh(pλ)1]+λ[sinh(pλ)q]=0...(i)λ=f(p,q)(onlynumerically)max.T=TA=THcosθA=Mg2λ1+tan2θAtanθA=sinhe+la=sinh[2lρtanαM+sinh1(tanα)]=sinh(pλ+sinh1λ)=1+λ2sinh(pλ)+λcosh(pλ)tan2θA=(1+λ2)sinh2(pλ)+λ2cosh2(pλ)+2λ1+λ2sinh(pλ)cosh(pλ)=(12+λ2)cosh(2pλ)+λ1+λ2sinh(2pλ)121+tan2θA=12+(12+λ2)cosh(2pλ)+λ1+λ2sinh(2pλ)max.T=Mg2λ12+(12+λ2)cosh(2pλ)+λ1+λ2sinh(2pλ)...(ii)example:h=3m,l=4m,ρBρ=50λ=tanα=0.7318from(i)max.T=1.7233×Mg2from(ii)incasethatropeismassless,wehaveλ=tanα=34=0.75T=53×Mg2=1.6667×Mg2

Commented by ajfour last updated on 25/Oct/18

Thank you too, Sir.  Very very nice question!

Thankyoutoo,Sir.Veryverynicequestion!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com