All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 46382 by peter frank last updated on 24/Oct/18
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Oct/18
dydx=−y2+y+1x2+x+1dyy2+y+1+dxx2+x+1=0∫dyy2+y+1+∫dxx2+x+1=C∫dyy2+2×y×12+14+34+∫dx(x+12)2+(32)223tan−1(y+1232)+23tan−1(x+1232)=ctan−1(2y+13)+tan−1(2x+13)=3c2tan−1(2y+13+2x+131−(4xy+2y+2x+13))=C1(2x+2y+2)3(3−4xy−2x−2y−13)=tanC13×2(x+y+1)2(1−2xy−x−y)=tanC1x+y+11−2xy−x−y=tanC13=A(x+y+1)=A(1−2xy−x−y)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com