Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 46383 by peter frank last updated on 24/Oct/18

Commented by maxmathsup by imad last updated on 24/Oct/18

z=0 is not solution for z≠0  (e) ⇔ (((z+1)/z))^n =1 ⇔(1+z^(−1) )^n =1  the roots of  Z^n =1 are the compolex Z_k =e^(i((2kπ)/n))   with k∈[[1,n−1]] so the solutions for  the equation are z_k  /     1+z_k ^(−1)   =Z_k  ⇒ ((z_k +1)/z_k )=Z_k  ⇒  z_k +1 =Z_k z_k  ⇒ (1−Z_k )z_k =−1 ⇒z_k =−(1/(1−Z_k )) =−(1/(1−cos(((2kπ)/n))−isin(((2kπ)/n))))  = ((−1)/(2sin^2 (((kπ)/n))−2i sin(((kπ)/n))cos(((kπ)/n)))) = ((−1)/(−2i sin(((kπ)/n))e^(i((kπ)/n)) ))  = ((−i)/(2sin(((kπ)/n)))) e^(−((ikπ)/n))   =((−i)/(2sin(((kπ)/n)))){cos(((kπ)/n))−isin(((kπ)/n))}  =−(1/2) −(i/2) cotan(((kπ)/n)) =−(1/2)(1+cotan(((kπ)/n))} with k∈[[1,n−1]] .

z=0isnotsolutionforz0(e)(z+1z)n=1(1+z1)n=1therootsofZn=1arethecompolexZk=ei2kπnwithk[[1,n1]]sothesolutionsfortheequationarezk/1+zk1=Zkzk+1zk=Zkzk+1=Zkzk(1Zk)zk=1zk=11Zk=11cos(2kπn)isin(2kπn)=12sin2(kπn)2isin(kπn)cos(kπn)=12isin(kπn)eikπn=i2sin(kπn)eikπn=i2sin(kπn){cos(kπn)isin(kπn)}=12i2cotan(kπn)=12(1+cotan(kπn)}withk[[1,n1]].

Commented by maxmathsup by imad last updated on 24/Oct/18

2 ) (z−1)^n  +z^n  =0 ⇔ (z−1)^n  =−z^n  ⇔ (((z−1)/z))^n  =−1  =e^(i(2k+1)π)  ⇒   ((z_k −1)/z_k ) = e^(i(((2k+1)π)/n))  ⇒ 1−z_k ^(−1)  = e^(i((2k+1)/n)π)  ⇒ 1−e^(i(((2k+1)π)/n))  =z_k ^(−1)  ⇒  z_k = (1/(1−cos((((2k+1)π)/n))−i sin((((2k+1)π)/n))cos((((2k+1)π)/n))))  = (1/(2sin^2 ((((2k+1)π)/(2n)))−2i sin((((2k+1)π)/(2n)))cos((((2k+1)π)/(2n)))))  =(1/(−2i sin((((2k+1)π)/(2n))) e^(i(((2k+1)/(2n))π)) ))  = (i/(2sin((((2k+1)π)/(2n))))){ cos((((2k+1)π)/(2n)))−isin((((2k+1)π)/(2n)))}  =(1/2) +(i/2) cotan((((2k+1)π)/(2n)))  with  k∈[[0,n−1]]

2)(z1)n+zn=0(z1)n=zn(z1z)n=1=ei(2k+1)πzk1zk=ei(2k+1)πn1zk1=ei2k+1nπ1ei(2k+1)πn=zk1zk=11cos((2k+1)πn)isin((2k+1)πn)cos((2k+1)πn)=12sin2((2k+1)π2n)2isin((2k+1)π2n)cos((2k+1)π2n)=12isin((2k+1)π2n)ei(2k+12nπ)=i2sin((2k+1)π2n){cos((2k+1)π2n)isin((2k+1)π2n)}=12+i2cotan((2k+1)π2n)withk[[0,n1]]

Commented by maxmathsup by imad last updated on 24/Oct/18

the roots of (z−1)^5  +z^5 =0 are z_k =(1/2){1+i cotan((((2k+1)π)/(10)))   with k∈[[0,4]]  z_0 =(1/2){1+icotan((π/(10)))}   , z_1 =(1/2){1+i cotan(((3π)/(10)))}  z_2 =(1/2){1+i cotan((π/2))}dont exist and not solution  z_3 =(1/2){1+i cotan(((7π)/(10)))}   z_4 =(1/2){1+i cotan(((9π)/(10)))}  also z =(1/2) is solution when cotan((((2k+1)π)/(10)))=0

therootsof(z1)5+z5=0arezk=12{1+icotan((2k+1)π10)withk[[0,4]]z0=12{1+icotan(π10)},z1=12{1+icotan(3π10)}z2=12{1+icotan(π2)}dontexistandnotsolutionz3=12{1+icotan(7π10)}z4=12{1+icotan(9π10)}alsoz=12issolutionwhencotan((2k+1)π10)=0

Answered by Smail last updated on 25/Oct/18

a)  (z+1)^n =z^n   z+1=ze^((2ikπ)/n)   z(e^((2ikπ)/n) −1)=1  z=(1/(e^((2ikπ)/n) −1))=(1/(cos(((2kπ)/n))−1+isin(((2ikπ)/n))))  =(1/(2cos^2 (((kπ)/n))−1−1+i(2sin(((kπ)/n))cos(((kπ)/n)))))  =(1/(2(cos^2 (((kπ)/n))−1+isin(((kπ)/n))cos(((kπ)/n)))))  =−(1/(2(sin^2 (((kπ)/n))−isin(((kπ)/n))cos(((kπ)/n)))))  =−(1/(2sin(((kπ)/n))(sin(((kπ)/n))−icos(((kπ)/n)))))  =−((sin(((kπ)/n))+icos(((kπ)/n)))/(2sin(((kπ)/n))))=((−1)/2)(1+icot(((kπ)/n)))  z=−(1/2)(1+icot(((kπ)/n)))  b)   (z−1)^n =−z^n =z^n e^(i(π+2kπ))   z−1=ze^(iπ((2k+1)/n)) ⇔z(e^(iπ((2k+1)/n)) −1)=−1  z=((−1)/(cos(((2k+1)/n)π)−1+isin(((2k+1)/n)π)))  =−((cos(((2k+1)/n)π)−1−isin(((2k+1)/n)π))/((cos(((2k+1)/n)π)−1)^2 +sin^2 (((2k+1)/n)π)))  =−((cos(((2k+1)/n)π)−1−isin(((2k+1)/n)π))/(cos^2 (((2k+1)/n)π)+1−2cos(((2k+1)/n)π)+sin^2 (((2k+1)/n)π)))  =−((cos(((2k+1)/n)π)−1−isin(((2k+1)/n)π))/(2−2cos(((2k+1)/n)π)))  =(1/2)(1+i((sin(((2k+1)/n)π))/(1−cos(((2k+1)/n)π))))  =(1/2)(1+i((2sin(((2k+1)/(2n))π)cos(((2k+1)/(2n))π))/(1−2cos^2 (((2k+1)/(2n))π)+1)))  =(1/2)(1+i((sin(((2k+1)/(2n))π)cos(((2k+1)/(2n))π))/(1−cos^2 (((2k+1)/(2n))π))))  =(1/2)(1−i((sin(((2k+1)/(2n))π)cos(((2k+1)/(2n))π))/(sin^2 (((2k+1)/(2n))π))))  z=(1/2)(1−icot(((2k+1)/(2n))π))  When  n=5  z_k =(1/2)(1−icot(((2k+1)/(10))π)  with  k=(0,1,2,3,4)

a)(z+1)n=znz+1=ze2ikπnz(e2ikπn1)=1z=1e2ikπn1=1cos(2kπn)1+isin(2ikπn)=12cos2(kπn)11+i(2sin(kπn)cos(kπn))=12(cos2(kπn)1+isin(kπn)cos(kπn))=12(sin2(kπn)isin(kπn)cos(kπn))=12sin(kπn)(sin(kπn)icos(kπn))=sin(kπn)+icos(kπn)2sin(kπn)=12(1+icot(kπn))z=12(1+icot(kπn))b)(z1)n=zn=znei(π+2kπ)z1=zeiπ2k+1nz(eiπ2k+1n1)=1z=1cos(2k+1nπ)1+isin(2k+1nπ)=cos(2k+1nπ)1isin(2k+1nπ)(cos(2k+1nπ)1)2+sin2(2k+1nπ)=cos(2k+1nπ)1isin(2k+1nπ)cos2(2k+1nπ)+12cos(2k+1nπ)+sin2(2k+1nπ)=cos(2k+1nπ)1isin(2k+1nπ)22cos(2k+1nπ)=12(1+isin(2k+1nπ)1cos(2k+1nπ))=12(1+i2sin(2k+12nπ)cos(2k+12nπ)12cos2(2k+12nπ)+1)=12(1+isin(2k+12nπ)cos(2k+12nπ)1cos2(2k+12nπ))=12(1isin(2k+12nπ)cos(2k+12nπ)sin2(2k+12nπ))z=12(1icot(2k+12nπ))Whenn=5zk=12(1icot(2k+110π)withk=(0,1,2,3,4)

Commented by peter frank last updated on 26/Oct/18

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com