Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 46419 by maxmathsup by imad last updated on 25/Oct/18

let f(x)= (√(x+1−(√(x−1))))  1) find D_f   2) determine f^(−1) (x)  3) find ∫ f(x)dx  4) dtetrmine ∫  f^(−1) (x)  5) let g(x)= (ch(x))^2    calculate fog(x) and (fog)^′ (x) .

letf(x)=x+1x11)findDf2)determinef1(x)3)findf(x)dx4)dtetrminef1(x)5)letg(x)=(ch(x))2calculatefog(x)and(fog)(x).

Commented by maxmathsup by imad last updated on 28/Oct/18

1) x∈ D_f  ⇔x+1−(√(x−1))≥0 and x≥1 ⇒x+1≥(√(x−1)) and x≥1  ⇒(x+1)^2 ≥x−1 and x≥1 ⇒x^2  +2x+1−x+1≥0 and x≥1   ⇒x(x+1)≥0 and x≥1 ⇒ D_f =[1,+∞[  2)let f(x)=y ⇒x=f^(−1) (y)  f(x)=y ⇒x+1−(√(x−1))=y^2  ⇒(x+1)−y^2 =(√(x−1))⇒  (x+1−y^2 )^2 =x−1 ⇒(x+1)^2 −2y^2 (x+1)+y^4 −x+1=0 ⇒  x^2  +2x+1 −2y^2 x−2y^2  +y^4 −x+1=0 ⇒  x^2  +(1−2y^2 )x +y^4 −2y^2  +2=0 this equation have s^t    ⇔Δ≥0 ⇒  (1−2y^2 )^2 −4(y^4 −2y^2 +2)≥0 ⇒4y^4 −4y^2 +1−4y^4  +8y^2 −8 ≥0 ⇒  4y^2 −7 ≥0  so x_1 =((2y^2 −1+(√(4y^2 −7)))/2)  and x_2 =((2y^2 −1−(√(4y^2 −7)))/2)  f^(−1) (x)=((2x^2 −1 +^− (√(4x^2 −7)))/2)

1)xDfx+1x10andx1x+1x1andx1(x+1)2x1andx1x2+2x+1x+10andx1x(x+1)0andx1Df=[1,+[2)letf(x)=yx=f1(y)f(x)=yx+1x1=y2(x+1)y2=x1(x+1y2)2=x1(x+1)22y2(x+1)+y4x+1=0x2+2x+12y2x2y2+y4x+1=0x2+(12y2)x+y42y2+2=0thisequationhavestΔ0(12y2)24(y42y2+2)04y44y2+14y4+8y2804y270sox1=2y21+4y272andx2=2y214y272f1(x)=2x21+4x272

Commented by maxmathsup by imad last updated on 28/Oct/18

3) ∫ f(x)dx = ∫ (√(x−1+2−(√(x−1))))dx  changement (√(x−1))=t givex−1=t^2 ⇒  ∫ f(x)dx = ∫ (√(t^2  +2−t))2t dt =2 ∫t (√(t^2 −t +2))dt  =2 ∫  t(√(t^2 −2(1/2)t +(1/4)+2−(1/4)))dt = 2 ∫ t(√((t−(1/2))^2 +(7/4)))dt  =_(t−(1/2)=((√7)/2)sh(t))    2  ∫ (((√7)/2)sh(t)+(1/2))((√7)/2)ch(t)((√7)/2)ch(t)dt  =(7/4) ∫ (1+(√7)sh(t)ch^2 (t) dt  =(7/4) ∫ ch^2 t dt  +((7(√7))/4) ∫ sh(t)ch^2 (t)dt  but ∫ ch^2 t dt =∫ ((1+ch(2t))/2)dt  =(t/2) +(1/4)sh(2t)=(t/2) +(1/2)sh(t)ch(t) and  ∫  sh(t)ch^2 t dt =(1/3)ch^3 t  ⇒  ∫ f(x)dx =(7/8)t +(7/8)sht)ch(t) +((7(√7))/(12))ch^3 (t) +c  =(7/8)(√(x−1)) +(7/8)sh((√(x−1)))ch((√(x−1)))+((7(√7))/(12))ch^3 ((√(x−1))) +c .

3)f(x)dx=x1+2x1dxchangementx1=tgivex1=t2f(x)dx=t2+2t2tdt=2tt2t+2dt=2tt2212t+14+214dt=2t(t12)2+74dt=t12=72sh(t)2(72sh(t)+12)72ch(t)72ch(t)dt=74(1+7sh(t)ch2(t)dt=74ch2tdt+774sh(t)ch2(t)dtbutch2tdt=1+ch(2t)2dt=t2+14sh(2t)=t2+12sh(t)ch(t)andsh(t)ch2tdt=13ch3tf(x)dx=78t+78sht)ch(t)+7712ch3(t)+c=78x1+78sh(x1)ch(x1)+7712ch3(x1)+c.

Commented by maxmathsup by imad last updated on 28/Oct/18

4) we have 2∫  f^(−1) (x)dx= ∫ (2x^2 −1)dx +^−  ∫  (√(4x^2 −7))dx but  ∫ (2x^2 −1)dx =(2/3)x^3 −x +c_1   ∫ (√(4x^2 −7))dx=∫2(√(x^2 −(7/4)))dx =_(x=((√7)/2)ch(t))   2 ∫  ((√7)/2)sh(t)((√7)/2)sh(t)dt  =(7/2) ∫  sh^2 (t)dt =(7/4) ∫ (ch(2t)−1)dt  =(7/8)sh(2t)−((7t)/4) +c_2   =(7/4)sh(t)ch(t)−(7/4)t +c_2 =(7/4) (√((((2x)/((√7) )))^2 −1))((2x)/(√7)) −(7/4) argch(((2x)/(√7)))+c_2   =((√7)/2)(√(((4x^2 )/7)−1))−(7/4)ln(((2x)/(√7)) +(√(((4x^2 )/7)−1))) +c_2   ⇒  ∫ f^(−1) (x)dx =(x^3 /3) −(x/2) +^−  {((√7)/4)(√(((4x^2 )/7)−1)) −(7/8)ln(((2x)/(√7)) +(√(((4x^2 )/7)−1))) +C .

4)wehave2f1(x)dx=(2x21)dx+4x27dxbut(2x21)dx=23x3x+c14x27dx=2x274dx=x=72ch(t)272sh(t)72sh(t)dt=72sh2(t)dt=74(ch(2t)1)dt=78sh(2t)7t4+c2=74sh(t)ch(t)74t+c2=74(2x7)212x774argch(2x7)+c2=724x27174ln(2x7+4x271)+c2f1(x)dx=x33x2+{744x27178ln(2x7+4x271)+C.

Commented by maxmathsup by imad last updated on 28/Oct/18

error of typo   ∫ f^(−1) (x)dx=(x^3 /3) −(x/2) +^− {((√7)/4) x(√(((4x^2 )/7)−1)) −(7/8)ln(((2x)/(√7)) +(√(((4x^2 )/7)−1))) +C

erroroftypof1(x)dx=x33x2+{74x4x27178ln(2x7+4x271)+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com