Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 46472 by peter frank last updated on 27/Oct/18

Answered by tanmay.chaudhury50@gmail.com last updated on 27/Oct/18

(asinθ+bcosθ)^2 =c^2   a^2 sin^2 θ+b^2 cos^2 θ+2absinθcosθ=c^2   a^2 (1−cos^2 θ)+b^2 (1−sin^2 θ)+2absinθcosθ=c^2   a^2 +b^2 −c^2 =a^2 cos^2 θ+b^2 sin^2 θ−2absinθcosθ  (a^2 +b^2 −c^2 )=(acosθ−bsinθ)^2   so (acosθ−bsinθ)=±(√(a^2 +b^2 −c^2 ))

(asinθ+bcosθ)2=c2a2sin2θ+b2cos2θ+2absinθcosθ=c2a2(1cos2θ)+b2(1sin2θ)+2absinθcosθ=c2a2+b2c2=a2cos2θ+b2sin2θ2absinθcosθ(a2+b2c2)=(acosθbsinθ)2so(acosθbsinθ)=±a2+b2c2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com