Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 46473 by peter frank last updated on 27/Oct/18

Find the value of θ  which satisfy the   equation  cosθx+cos(x+2)θ=cosθ

Findthevalueofθwhichsatisfytheequationcosθx+cos(x+2)θ=cosθ

Answered by tanmay.chaudhury50@gmail.com last updated on 27/Oct/18

2cos(((xθ+xθ+2θ)/2))cos(((xθ+2θ−xθ)/2))=cosθ  2cos(xθ+θ)cosθ−cosθ=0  cosθ{2cos(xθ+θ)−1}=0  either cosθ=0  cosθ=cos(π/2)  so θ=2nπ±(π/2)  or cos(xθ+θ)=(1/2)=cos(π/3)  θ(x+1)=2nπ±(π/3)  θ=(1/(x+1))[2nπ±(π/3)]

2cos(xθ+xθ+2θ2)cos(xθ+2θxθ2)=cosθ2cos(xθ+θ)cosθcosθ=0cosθ{2cos(xθ+θ)1}=0eithercosθ=0cosθ=cosπ2soθ=2nπ±π2orcos(xθ+θ)=12=cosπ3θ(x+1)=2nπ±π3θ=1x+1[2nπ±π3]

Terms of Service

Privacy Policy

Contact: info@tinkutara.com