Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 46478 by rahul 19 last updated on 27/Oct/18

If x^2 +y^2 +xy=1. Find range of   E = x^3 y+xy^3 +4 .

Ifx2+y2+xy=1.FindrangeofE=x3y+xy3+4.

Commented by rahul 19 last updated on 27/Oct/18

Sir, ans. is   2≤E≤((38)/9) .  Is it wrong as i cannot find any mistake  in your solution....??

Sir,ans.is2E389.Isitwrongasicannotfindanymistakeinyoursolution....??

Answered by MJS last updated on 27/Oct/18

x^2 +yx+y^2 −1=0  this is an ellipse with center  ((0),(0) ) and θ=−45°  y=−(x/2)±((√(4−3x^2 ))/2) ⇒ −((2(√3))/3)≤x≤((2(√3))/3)  ⇒ −((2(√3))/3)≤y≤((2(√3))/3) [because of symmetry]    E(x)=x^3 (−(x/2)±((√(4−3x^2 ))/2))+x(−(x/2)±((√(4−3x^2 ))/2))^3 +4=  =(x^4 /2)−((3x^2 )/2)+4±((x(x^2 +1)(√(4−3x^2 )))/2)  solving E′(x)=0 we get minima and maxima  at x=±1 and x=±((√3)/3) ⇒ range(E)=[2; ((38)/9)]

x2+yx+y21=0thisisanellipsewithcenter(00)andθ=45°y=x2±43x22233x233233y233[becauseofsymmetry]E(x)=x3(x2±43x22)+x(x2±43x22)3+4==x423x22+4±x(x2+1)43x22solvingE(x)=0wegetminimaandmaximaatx=±1andx=±33range(E)=[2;389]

Commented by rahul 19 last updated on 27/Oct/18

thanks sir! ����

Terms of Service

Privacy Policy

Contact: info@tinkutara.com