Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 46617 by maxmathsup by imad last updated on 29/Oct/18

calculate  Σ_(n=1) ^∞   (1/(n(n+1)(n+2)(n+3)(n+4)(n+5)))

calculaten=11n(n+1)(n+2)(n+3)(n+4)(n+5)

Commented by maxmathsup by imad last updated on 29/Oct/18

let decompose F(x)=(1/(x(x+1)(x+2)(x+3)(x+4)(x+5)))  F(x)=(a/(x )) +(b/(x+1)) +(c/(x+2)) +(d/(x+3)) +(e/(x+4)) +(f/(x+5))  a =lim_(x→0) xF(x)=(1/(1.2.3.4.5)) =(1/(120))  b=lim_(x→−1) (x+1)F(x)=(1/((−1)1.2.3.4)) =((−1)/(24))  c=lim_(x→−2) (x+2)F(x)= (1/((−2).(−1)1.2.3)) =(1/(12))  d =lim_(x→−3) (x+3)F(x)=(1/((−3)(−2)(−1)1.2)) =((−1)/(12))  e =lim_(x→−4) (x+4)F(x)=(1/((−4)(−3)(−2)(−1).1)) =(1/(24))  f =lim_(x→−5) (x+5)F(x) =(1/((−5)(−4)(−3)(−2)(−1))) =((−1)/(120)) ⇒  F(x)=(1/(120x)) −(1/(24(x+1))) +(1/(12(x+2))) −(1/(12(x+3))) +(1/(24(x+4))) −(1/(120(x+5))) ⇒  Σ_(k=1) ^n F(k) =(1/(120)) Σ_(k=1) ^n (1/k) −(1/(24)) Σ_(k=1) ^n  (1/(k+1)) +(1/(12))Σ_(k=1) ^n  (1/(k+2)) −(1/(12))Σ_(k=1) ^n  (1/(k+3))  +(1/(24)) Σ_(k=1) ^n  (1/(k+4)) −(1/(120))Σ_(k=1) ^n (1/(k+5))  =(1/(120)) H_n −(1/(24)){ H_(n+1) −1} +(1/(12)){H_(n+2) −(3/2)} −(1/(12)){H_(n+3) −(3/2)−(1/3)}  +(1/(24)){H_(n+4) −(3/2)−(1/3)−(1/4)}−(1/(120)){H_(n+5) −(3/2)−(1/3)−(1/4) −(1/5)}  =(1/(120)){H_n −H_(n+5) } +(1/(24)){H_(n+4) −H_(n+1) } +(1/(12)){ H_(n+2) −H_(n+3) }  +(1/(24)) −(1/8) +(1/(12))((3/2)+(1/3))−(1/(24))((3/2)+(1/3)+(1/4))+(1/(120)){(3/2) +(1/3) +(1/4) +(1/5)} but  H_n −H_(n+5) →0 ,H_(n+4) −H_(n+1) →0 ^� H_(n+2) −H_(n+3) →0 (n→+∞)  after reducton of calculus we get   lim_(n→+∞) Σ_(k=1) ^n  F(k) =(1/(600))  =S .

letdecomposeF(x)=1x(x+1)(x+2)(x+3)(x+4)(x+5)F(x)=ax+bx+1+cx+2+dx+3+ex+4+fx+5a=limx0xF(x)=11.2.3.4.5=1120b=limx1(x+1)F(x)=1(1)1.2.3.4=124c=limx2(x+2)F(x)=1(2).(1)1.2.3=112d=limx3(x+3)F(x)=1(3)(2)(1)1.2=112e=limx4(x+4)F(x)=1(4)(3)(2)(1).1=124f=limx5(x+5)F(x)=1(5)(4)(3)(2)(1)=1120F(x)=1120x124(x+1)+112(x+2)112(x+3)+124(x+4)1120(x+5)k=1nF(k)=1120k=1n1k124k=1n1k+1+112k=1n1k+2112k=1n1k+3+124k=1n1k+41120k=1n1k+5=1120Hn124{Hn+11}+112{Hn+232}112{Hn+33213}+124{Hn+4321314}1120{Hn+532131415}=1120{HnHn+5}+124{Hn+4Hn+1}+112{Hn+2Hn+3}+12418+112(32+13)124(32+13+14)+1120{32+13+14+15}butHnHn+50,Hn+4Hn+10¯Hn+2Hn+30(n+)afterreductonofcalculuswegetlimn+k=1nF(k)=1600=S.

Answered by tanmay.chaudhury50@gmail.com last updated on 29/Oct/18

first calculate S_n    then the value when n→∞  S_n =C−(1/((n+1)(n+2)(n+3)(n+4)(n+5)×1×5))  S_1 =T_1 =(1/(1×2×3×4×5×6))=(1/(720))  so S_n =C−(1/((n+1)(n+2)(n+3)(n+4)(n+5)×1×5))  (1/(720))=C−(1/(2×3×4×5×6×1×5))  C=(1/(720))+(1/(720×5))=(1/(720))(1+(1/5))=(1/(720))×(6/5)  C=(1/(600))  s0  S_n =(1/(600))−(1/((n+1)(n+2)(n+3)(n+4)(n+5)×1×5))  when n→∞  S_n →(1/(600))  so reauired answer is (1/(600))

firstcalculateSnthenthevaluewhennSn=C1(n+1)(n+2)(n+3)(n+4)(n+5)×1×5S1=T1=11×2×3×4×5×6=1720soSn=C1(n+1)(n+2)(n+3)(n+4)(n+5)×1×51720=C12×3×4×5×6×1×5C=1720+1720×5=1720(1+15)=1720×65C=1600s0Sn=16001(n+1)(n+2)(n+3)(n+4)(n+5)×1×5whennSn1600soreauiredansweris1600

Terms of Service

Privacy Policy

Contact: info@tinkutara.com