Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 46624 by rahul 19 last updated on 29/Oct/18

The value of k which minimizes  F(k)= ∫_0 ^4 ∣x(4−x)−k∣dx = ?

ThevalueofkwhichminimizesF(k)=04x(4x)kdx=?

Commented by rahul 19 last updated on 29/Oct/18

Ans. is 3.

Ans.is3.

Commented by ajfour last updated on 30/Oct/18

Commented by ajfour last updated on 30/Oct/18

F(k) = ∫_0 ^(  4) ∣4−k−(x−2)^2 ∣dx   let  4−k−(α−2)^2 =0     ...(i)  ⇒   −1−2(α−2)(dα/dk) = 0      ...(ii)      = ∫_0 ^(  4) {(x−2)^2 −(4−k)}dx           +4∫_α ^(  2) {(4−k−(x−2)^2 }dx  F (k)= c−4(4−k)           +4(4−k)(2−α)+(4/3)(α−2)^3   F ′(k)= 4−4(2−α)−4(4−k)(dα/dk)                        +4(α−2)^2  (dα/dk)    When F(k) is minimum F ′(k)=0  ⇒ 1−(2−α)= (dα/dk)[4−k−(α−2)^2 ]=0  using (i) & (ii)    1−(2−α) = 0  ⇒   α = 1  hence from (i)       4−k−(1−2)^2  = 0  or     k = 3 .

F(k)=044k(x2)2dxlet4k(α2)2=0...(i)12(α2)dαdk=0...(ii)=04{(x2)2(4k)}dx+4α2{(4k(x2)2}dxF(k)=c4(4k)+4(4k)(2α)+43(α2)3F(k)=44(2α)4(4k)dαdk+4(α2)2dαdkWhenF(k)isminimumF(k)=01(2α)=dαdk[4k(α2)2]=0using(i)&(ii)1(2α)=0α=1hencefrom(i)4k(12)2=0ork=3.

Commented by rahul 19 last updated on 31/Oct/18

thank you sir!

Answered by tanmay.chaudhury50@gmail.com last updated on 29/Oct/18

x(4−x)−k  4x−x^2 −k  −x^2 +4x−4+4−k  −(x^2 −4x+4)+4−k  4−k−(x−2)^2   as the value of x increases  so the value of   4−k−(x−2)^2  decreases hence it has no minimum  value  when x=2    4−k−(x−2)^2     the maximum value of  4−(x−2)^2   is 4−k  ∫_0 ^2 ∣4x−x^2 −k∣dx+∫_2 ^4 ∣4x−x^2 −k∣dx  wait pls...

x(4x)k4xx2kx2+4x4+4k(x24x+4)+4k4k(x2)2asthevalueofxincreasessothevalueof4k(x2)2decreaseshenceithasnominimumvaluewhenx=24k(x2)2themaximumvalueof4(x2)2is4k024xx2kdx+244xx2kdxwaitpls...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com