Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 4670 by malwaan last updated on 20/Feb/16

prove that  0.101101110→   irrational number

$${prove}\:{that} \\ $$$$\mathrm{0}.\mathrm{101101110}\rightarrow\: \\ $$$${irrational}\:{number} \\ $$

Commented by prakash jain last updated on 21/Feb/16

Non−recurring non−terminating decimals  are irrational.

$$\mathrm{Non}−\mathrm{recurring}\:\mathrm{non}−\mathrm{terminating}\:\mathrm{decimals} \\ $$$$\mathrm{are}\:\mathrm{irrational}. \\ $$

Commented by malwaan last updated on 21/Feb/16

Is there mathematical prove?

$${Is}\:{there}\:{mathematical}\:{prove}? \\ $$

Commented by 123456 last updated on 21/Feb/16

any proof would be like this, call  s=0.101101110....  you must shown that no  (p,q)∈Z^2 ,q≠0,(p,q)=1 such that  s=(p/q)

$$\mathrm{any}\:\mathrm{proof}\:\mathrm{would}\:\mathrm{be}\:\mathrm{like}\:\mathrm{this},\:\mathrm{call} \\ $$$${s}=\mathrm{0}.\mathrm{101101110}.... \\ $$$$\mathrm{you}\:\mathrm{must}\:\mathrm{shown}\:\mathrm{that}\:\mathrm{no} \\ $$$$\left({p},{q}\right)\in\mathbb{Z}^{\mathrm{2}} ,{q}\neq\mathrm{0},\left({p},{q}\right)=\mathrm{1}\:\mathrm{such}\:\mathrm{that} \\ $$$${s}=\frac{{p}}{{q}} \\ $$

Commented by FilupSmith last updated on 22/Feb/16

a_1 =0.1=(1/(10))  a_2 =0.0011=((11)/(10^ ))  a_3 =0.00000111=((111)/(10^8 ))  a_4 =0.0000000001111=((1111)/(10^(13) ))  a_5 =0.0000000000000011111=((11111)/(10^(19) ))  a_6 =0.00000000000000000000111111=((111111)/(10^(26) ))  ⋮  a_n =(((111...1_(n−ones) ))/(10^k )), k_n =0, 1, 4, 8, 13, 19, 26, ...  According to Wolfram Alpha  k=−(((n−2)^2 n)/((n−1)^3 ))  A=Σ_(i=1) ^∞ a_i   A=0.101101110=(1/(10))+((11)/(10^4 ))+((111)/(10^8 ))+...  Prove RHS is irrational

$${a}_{\mathrm{1}} =\mathrm{0}.\mathrm{1}=\frac{\mathrm{1}}{\mathrm{10}} \\ $$$${a}_{\mathrm{2}} =\mathrm{0}.\mathrm{0011}=\frac{\mathrm{11}}{\mathrm{10}^{} } \\ $$$${a}_{\mathrm{3}} =\mathrm{0}.\mathrm{00000111}=\frac{\mathrm{111}}{\mathrm{10}^{\mathrm{8}} } \\ $$$${a}_{\mathrm{4}} =\mathrm{0}.\mathrm{0000000001111}=\frac{\mathrm{1111}}{\mathrm{10}^{\mathrm{13}} } \\ $$$${a}_{\mathrm{5}} =\mathrm{0}.\mathrm{0000000000000011111}=\frac{\mathrm{11111}}{\mathrm{10}^{\mathrm{19}} } \\ $$$${a}_{\mathrm{6}} =\mathrm{0}.\mathrm{00000000000000000000111111}=\frac{\mathrm{111111}}{\mathrm{10}^{\mathrm{26}} } \\ $$$$\vdots \\ $$$${a}_{{n}} =\frac{\left(\underset{\mathrm{n}−\mathrm{ones}} {\mathrm{111}...\mathrm{1}}\right)}{\mathrm{10}^{{k}} },\:{k}_{{n}} =\mathrm{0},\:\mathrm{1},\:\mathrm{4},\:\mathrm{8},\:\mathrm{13},\:\mathrm{19},\:\mathrm{26},\:... \\ $$$$\mathrm{According}\:\mathrm{to}\:\mathrm{Wolfram}\:\mathrm{Alpha} \\ $$$${k}=−\frac{\left({n}−\mathrm{2}\right)^{\mathrm{2}} {n}}{\left({n}−\mathrm{1}\right)^{\mathrm{3}} } \\ $$$${A}=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}{a}_{{i}} \\ $$$${A}=\mathrm{0}.\mathrm{101101110}=\frac{\mathrm{1}}{\mathrm{10}}+\frac{\mathrm{11}}{\mathrm{10}^{\mathrm{4}} }+\frac{\mathrm{111}}{\mathrm{10}^{\mathrm{8}} }+... \\ $$$$\mathrm{Prove}\:\mathrm{RHS}\:\mathrm{is}\:\mathrm{irrational} \\ $$

Commented by prakash jain last updated on 22/Feb/16

A number of (p/q) (p,q) is either a teminating  decimal or repeatitive decimal.  This can be proved easily.  So by contradiction the number in example  cannot be written in form (p/q).

$$\mathrm{A}\:\mathrm{number}\:\mathrm{of}\:\frac{{p}}{{q}}\:\left({p},{q}\right)\:\mathrm{is}\:\mathrm{either}\:\mathrm{a}\:\mathrm{teminating} \\ $$$$\mathrm{decimal}\:\mathrm{or}\:\mathrm{repeatitive}\:\mathrm{decimal}. \\ $$$$\mathrm{This}\:\mathrm{can}\:\mathrm{be}\:\mathrm{proved}\:\mathrm{easily}. \\ $$$$\mathrm{So}\:\mathrm{by}\:\mathrm{contradiction}\:\mathrm{the}\:\mathrm{number}\:\mathrm{in}\:\mathrm{example} \\ $$$$\mathrm{cannot}\:\mathrm{be}\:\mathrm{written}\:\mathrm{in}\:\mathrm{form}\:\frac{{p}}{{q}}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com