Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 4671 by 314159 last updated on 20/Feb/16

Define a function f:R→R such that f(f(x))=x^2 −x+1  for all real x.Evaluate f(0).

$${Define}\:{a}\:{function}\:{f}:{R}\rightarrow{R}\:{such}\:{that}\:{f}\left({f}\left({x}\right)\right)={x}^{\mathrm{2}} −{x}+\mathrm{1} \\ $$$${for}\:{all}\:{real}\:{x}.{Evaluate}\:{f}\left(\mathrm{0}\right). \\ $$$$ \\ $$

Answered by 123456 last updated on 20/Feb/16

f(f(x))=x^2 −x+1  f(f(f(x)))=f(x)^2 −f(x)+1  f(f(0))=1  f(f(1))=1  f(f(f(1)))=f(1)^2 −f(1)+1  f(1)=f(1)^2 −f(1)+1  f(1)^2 −2f(1)+1=0  (f(1)−1)^2 =0  f(1)=1  f(f(f(0)))=f(0)^2 −f(0)+1  f(1)=f(0)^2 −f(0)+1  1=f(0)^2 −f(0)+1  f(0)(f(0)−1)=0  f(0)=0∨f(0)=1  if f(0)=0  f(f(0))=f(0)=0≠1  so  f(0)=1  ⋮

$${f}\left({f}\left({x}\right)\right)={x}^{\mathrm{2}} −{x}+\mathrm{1} \\ $$$${f}\left({f}\left({f}\left({x}\right)\right)\right)={f}\left({x}\right)^{\mathrm{2}} −{f}\left({x}\right)+\mathrm{1} \\ $$$${f}\left({f}\left(\mathrm{0}\right)\right)=\mathrm{1} \\ $$$${f}\left({f}\left(\mathrm{1}\right)\right)=\mathrm{1} \\ $$$${f}\left({f}\left({f}\left(\mathrm{1}\right)\right)\right)={f}\left(\mathrm{1}\right)^{\mathrm{2}} −{f}\left(\mathrm{1}\right)+\mathrm{1} \\ $$$${f}\left(\mathrm{1}\right)={f}\left(\mathrm{1}\right)^{\mathrm{2}} −{f}\left(\mathrm{1}\right)+\mathrm{1} \\ $$$${f}\left(\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}{f}\left(\mathrm{1}\right)+\mathrm{1}=\mathrm{0} \\ $$$$\left({f}\left(\mathrm{1}\right)−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$${f}\left({f}\left({f}\left(\mathrm{0}\right)\right)\right)={f}\left(\mathrm{0}\right)^{\mathrm{2}} −{f}\left(\mathrm{0}\right)+\mathrm{1} \\ $$$${f}\left(\mathrm{1}\right)={f}\left(\mathrm{0}\right)^{\mathrm{2}} −{f}\left(\mathrm{0}\right)+\mathrm{1} \\ $$$$\mathrm{1}={f}\left(\mathrm{0}\right)^{\mathrm{2}} −{f}\left(\mathrm{0}\right)+\mathrm{1} \\ $$$${f}\left(\mathrm{0}\right)\left({f}\left(\mathrm{0}\right)−\mathrm{1}\right)=\mathrm{0} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{0}\vee{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\mathrm{if}\:{f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${f}\left({f}\left(\mathrm{0}\right)\right)={f}\left(\mathrm{0}\right)=\mathrm{0}\neq\mathrm{1} \\ $$$$\mathrm{so} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\vdots \\ $$

Commented by 123456 last updated on 21/Feb/16

f(0)=a⇒f(f(0))=f(a)=1  f(1)=b⇒f(f(1))=f(b)=1  f(f(a))=f(1)=b  f(f(b))=f(1)=b  a^2 −a+1=b⇒a=0∨a=1  b^2 −b+1=b⇒b=1  f(x)=x  f(f(x))=f(x)=x  x^2 −x+1=x  x=1

$${f}\left(\mathrm{0}\right)={a}\Rightarrow{f}\left({f}\left(\mathrm{0}\right)\right)={f}\left({a}\right)=\mathrm{1} \\ $$$${f}\left(\mathrm{1}\right)={b}\Rightarrow{f}\left({f}\left(\mathrm{1}\right)\right)={f}\left({b}\right)=\mathrm{1} \\ $$$${f}\left({f}\left({a}\right)\right)={f}\left(\mathrm{1}\right)={b} \\ $$$${f}\left({f}\left({b}\right)\right)={f}\left(\mathrm{1}\right)={b} \\ $$$${a}^{\mathrm{2}} −{a}+\mathrm{1}={b}\Rightarrow{a}=\mathrm{0}\vee{a}=\mathrm{1} \\ $$$${b}^{\mathrm{2}} −{b}+\mathrm{1}={b}\Rightarrow{b}=\mathrm{1} \\ $$$${f}\left({x}\right)={x} \\ $$$${f}\left({f}\left({x}\right)\right)={f}\left({x}\right)={x} \\ $$$${x}^{\mathrm{2}} −{x}+\mathrm{1}={x} \\ $$$${x}=\mathrm{1} \\ $$

Commented by 314159 last updated on 21/Feb/16

Thanks a lot!

$${Thanks}\:{a}\:{lot}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com