Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 46744 by math khazana by abdo last updated on 31/Oct/18

calculate S_n =Σ_(0≤i,j≤n)  ((i+j)/2^(i+j) )

calculateSn=0i,jni+j2i+j

Commented by MJS last updated on 31/Oct/18

I think S_∞ =8 but I cannot prove it

IthinkS=8butIcannotproveit

Commented by maxmathsup by imad last updated on 31/Oct/18

we have S_n =Σ_(i=0) ^n  Σ_(j=0) ^n  ((i/(2^i  2^j )) +(j/(2^i 2^j )))  =Σ_(i=0) ^n  (i/2^i )Σ_(j=0) ^n  (1/2^j ) +Σ_(i=0) ^n  (1/2^i )Σ_(j=0) ^n  (j/2^j )  = 2 Σ_(i=0) ^n  (i/2^i )Σ_(j=0) ^n  (1/2^j )( the function  (i,j)→((i+j)/2^(i+j) ) is symetric)  we have Σ_(j=0) ^n  (1/2^j )  =((1−((1/2))^(n+1) )/(1−(1/2))) =2(1−(1/2^(n+1) ))  =2 −(1/2^n ) also  Σ_(i=0) ^n  (i/2^i ) = w((1/2)) with w(x)=Σ_(i=0) ^n ix^i    (x≠1)  we have Σ_(i=0) ^n  x^i  =((x^(n+1) −1)/(x−1)) ⇒Σ_(i=1) ^n  i x^(i−1)  =((nx^(n+1) −(n+1)x^n +1)/((1−x)^2 )) ⇒  Σ_(i=1) ^n  i x^i  = (x/((1−x)^2 )){nx^(n+1) −(n+1x^n  +1}=w(x) ⇒  w((1/2)) =(1/(2((1/4)))){(n/2^(n+1) ) −((n+1)/2^n ) +1} =(n/2^n ) −((n+1)/2^(n−1) ) +2 ⇒  S_n =2 ( (n/2^n ) −((n+1)/2^(n−1) ) +2)(2−(1/2^n ))  and we see that lim_(n→+∞)  S_(n ) =8 .

wehaveSn=i=0nj=0n(i2i2j+j2i2j)=i=0ni2ij=0n12j+i=0n12ij=0nj2j=2i=0ni2ij=0n12j(thefunction(i,j)i+j2i+jissymetric)wehavej=0n12j=1(12)n+1112=2(112n+1)=212nalsoi=0ni2i=w(12)withw(x)=i=0nixi(x1)wehavei=0nxi=xn+11x1i=1nixi1=nxn+1(n+1)xn+1(1x)2i=1nixi=x(1x)2{nxn+1(n+1xn+1}=w(x)w(12)=12(14){n2n+1n+12n+1}=n2nn+12n1+2Sn=2(n2nn+12n1+2)(212n)andweseethatlimn+Sn=8.

Answered by MrW3 last updated on 31/Oct/18

((i+j)/2^(i+j) )=((i+j)/(2^i 2^j ))=(i/2^i )×(1/2^j )+(1/2^i )×(j/2^j )  S_n =Σ_(i=0) ^n Σ_(j=0) ^n ((i+j)/2^(i+j) )=Σ_(i=0) ^n (i/2^i )Σ_(j=0) ^n (1/2^j )+Σ_(i=0) ^n (1/2^i )Σ_(j=0) ^n (j/2^j )  Σ_(i=0) ^n (1/2^i )=((1−(1/2^(n+1) ))/(1−(1/2)))=2(1−(1/2^(n+1) ))  let T=Σ_(i=0) ^n (i/2^i )  T=(1/2)+(2/2^2 )+(3/2^3 )+...+(n/2^n )  2T=1+((1+1)/2)+((1+2)/2^2 )+((1+3)/2^3 )...+((1+n−1)/2^(n−1) )  2T=1+((1/2)+(1/2))+((1/2^2 )+(2/2^2 ))+((1/2^3 )+(3/2^3 ))...+((1/2^(n−1) )+((n−1)/2^(n−1) ))  2T=(1+(1/2)+(1/2^2 )+(1/2^3 )+...+(1/2^(n−1) ))+((1/2)+(2/2^2 )+(3/2^3 )...+((n−1)/2^(n−1) ))  2T=(1+(1/2)+(1/2^2 )+(1/2^3 )+...+(1/2^(n−1) ))+((1/2)+(2/2^2 )+(3/2^3 )...+((n−1)/2^(n−1) )+(n/2^n ))−(n/2^n )  2T=(1+(1/2)+(1/2^2 )+(1/2^3 )+...+(1/2^(n−1) ))+T−(n/2^n )  T=(1+(1/2)+(1/2^2 )+(1/2^3 )+...+(1/2^(n−1) ))−(n/2^n )  T=2(1−(1/2^n ))−(n/2^n )=2−((n+2)/2^n )=2(1−((n+2)/2^(n+1) ))  S_n =Σ_(i=0) ^n Σ_(j=0) ^n ((i+j)/2^(i+j) )=Σ_(i=0) ^n (i/2^i )Σ_(j=0) ^n (1/2^j )+Σ_(i=0) ^n (1/2^i )Σ_(j=0) ^n (j/2^j )  =2Σ_(i=0) ^n (i/2^i )Σ_(i=0) ^n (1/2^i )=2×2(1−((n+2)/2^(n+1) ))×2(1−(1/2^(n+1) ))  ⇒S_n =8(1−((n+2)/2^(n+1) ))(1−(1/2^(n+1) ))  lim_(n→∞) S_n =8

i+j2i+j=i+j2i2j=i2i×12j+12i×j2jSn=ni=0nj=0i+j2i+j=ni=0i2inj=012j+ni=012inj=0j2jni=012i=112n+1112=2(112n+1)letT=ni=0i2iT=12+222+323+...+n2n2T=1+1+12+1+222+1+323...+1+n12n12T=1+(12+12)+(122+222)+(123+323)...+(12n1+n12n1)2T=(1+12+122+123+...+12n1)+(12+222+323...+n12n1)2T=(1+12+122+123+...+12n1)+(12+222+323...+n12n1+n2n)n2n2T=(1+12+122+123+...+12n1)+Tn2nT=(1+12+122+123+...+12n1)n2nT=2(112n)n2n=2n+22n=2(1n+22n+1)Sn=ni=0nj=0i+j2i+j=ni=0i2inj=012j+ni=012inj=0j2j=2ni=0i2ini=012i=2×2(1n+22n+1)×2(112n+1)Sn=8(1n+22n+1)(112n+1)limnSn=8

Commented by behi83417@gmail.com last updated on 31/Oct/18

eX⊆elle^(Nt) !

eXelleNt!

Commented by maxmathsup by imad last updated on 31/Oct/18

thank you sir.

thankyousir.

Commented by MJS last updated on 31/Oct/18

great

great

Commented by MrW3 last updated on 31/Oct/18

thanks to all!  please also check answer to Q46731.

thankstoall!pleasealsocheckanswertoQ46731.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com