Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 46829 by peter frank last updated on 01/Nov/18

Answered by tanmay.chaudhury50@gmail.com last updated on 01/Nov/18

eqn of focal chord is  y=tanθ(x−(√(a^2 −b^2 )) ) focaus((√(a^2 −b^2 )) ,0)  length of focal chord  (√((x_2 −x_2 )^2 +(y_2 −y_1 )^2 ))   solve y=tanθ(x−(√(a^2 −b^2 )) )and (x^2 /a^2 )+(y^2 /b^2 )=1  to get (x_1 ,y_1 ) and(x_2 ,y_2 )  y=tanθ(x−p)  (x^2 /a^2 )+((tan^2 θ(x−p)^2 )/b^2 )=1   (p=(√(a^2 −b^2 )) )  b^2 x^2 +a^2 tan^2 θ((x^2 −2xp+p^2 )=a^2 b^2   x^2 (b^2 +a^2 tan^2 θ)−x(2p×a^2 tan^2 θ)+a^2 tan^2 θp^2 −a^2 b^2 =0  x_1 +x_2 =((2p×a^2 tan^2 θ)/((b^2 +a^2 tan^2 θ)))←x_1 +x_2   x_1 x_2 =((a^2 p^2 tan^2 θ−a^2 b^2 )/(b^2 +a^2 tan^2 θ))←x_1 x_2       (x_2 −x_1 )^2 =(x_2 +x_1 )^2 −4x_1 x_2              =((4p^2 a^4 tan^4 θ)/((b^2 +a^2 tan^2 θ)^2 ))−((4a^2 p^2 tan^2 θ−4a^2 b^2 )/(b^2 +a^2 tan^2 θ))  =((4p^2 a^4 tan^4 θ−(b^2 +a^2 tan^2 θ)(4a^2 p^2 tan^2 θ−4a^2 b^2 ))/((b^2 +a^2 tan^2 θ)^2 ))  =((4p^2 a^4 tan^4 θ−4a^2 b^2 p^2 tan^2 θ+4a^2 b^4 −4a^4 p^2 tan^4 θ+4a^4 b^2 tan^2 θ)/((b^2 +a^2 tan^2 θ)^2 ))  =((4a^2 b^4 −4a^2 b^2 p^2 tan^2 θ+4a^4 b^2 tan^2 θ)/((b^2 +a^2 tan^2 θ)^2 ))←(x_2 −x_1 )^2   =((4a^2 b^4 +4a^2 b^2 tan^2 θ(a^2 −p^2 ))/((b^2 +a^2 tan^2 θ)^2 ))  =((4a^2 b^4 +4a^2 b^4 tan^2 θ)/D_r ^2 )    [p^2 =a^2 −b^2 ]  =((4a^2 b^4 (1+tan^2 θ))/D_r ^2 )=((4a^2 b^4 sec^2 θ)/D_r ^2 )  so (x_2 −x_1 )=((2ab^2 secθ)/D_r )  y=(x−p)tanθ  y_2 −y_1 =tanθ(x_2 −p−x_1 +p)  y_2 −y_1 =tanθ(x_2 −x_1 )  {(y_2 −y_1 )^2 +(x_2 −x_1 )^2 }^(1/2)   =[(x_2 −x_1 )^2 {tan^2 θ+1}]^(1/2)   =(x_2 −x_1 )secθ  =((2ab^2 sec^2 θ)/D_r )=((2ab^2 )/(cos^2 θ[b^2 +a^2 tan^2 θ]))  =((2ab^2 )/(b^2 cos^2 θ+a^2 sin^2 θ))  ultimately got the answer

eqnoffocalchordisy=tanθ(xa2b2)focaus(a2b2,0)lengthoffocalchord(x2x2)2+(y2y1)2solvey=tanθ(xa2b2)andx2a2+y2b2=1toget(x1,y1)and(x2,y2)y=tanθ(xp)x2a2+tan2θ(xp)2b2=1(p=a2b2)b2x2+a2tan2θ((x22xp+p2)=a2b2x2(b2+a2tan2θ)x(2p×a2tan2θ)+a2tan2θp2a2b2=0x1+x2=2p×a2tan2θ(b2+a2tan2θ)x1+x2x1x2=a2p2tan2θa2b2b2+a2tan2θx1x2(x2x1)2=(x2+x1)24x1x2=4p2a4tan4θ(b2+a2tan2θ)24a2p2tan2θ4a2b2b2+a2tan2θ=4p2a4tan4θ(b2+a2tan2θ)(4a2p2tan2θ4a2b2)(b2+a2tan2θ)2=4p2a4tan4θ4a2b2p2tan2θ+4a2b44a4p2tan4θ+4a4b2tan2θ(b2+a2tan2θ)2=4a2b44a2b2p2tan2θ+4a4b2tan2θ(b2+a2tan2θ)2(x2x1)2=4a2b4+4a2b2tan2θ(a2p2)(b2+a2tan2θ)2=4a2b4+4a2b4tan2θDr2[p2=a2b2]=4a2b4(1+tan2θ)Dr2=4a2b4sec2θDr2so(x2x1)=2ab2secθDry=(xp)tanθy2y1=tanθ(x2px1+p)y2y1=tanθ(x2x1){(y2y1)2+(x2x1)2}12=[(x2x1)2{tan2θ+1}]12=(x2x1)secθ=2ab2sec2θDr=2ab2cos2θ[b2+a2tan2θ]=2ab2b2cos2θ+a2sin2θultimatelygottheanswer

Commented by peter frank last updated on 01/Nov/18

God bless you sir.thank you

Godblessyousir.thankyou

Commented by peter frank last updated on 01/Nov/18

D_r  mean?

Drmean?

Commented by tanmay.chaudhury50@gmail.com last updated on 02/Nov/18

D_r =denominator...i have placed D_r  to mimise   time ...not writing the value of D_(r  ) again ana again

Dr=denominator...ihaveplacedDrtomimisetime...notwritingthevalueofDragainanaagain

Terms of Service

Privacy Policy

Contact: info@tinkutara.com