Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 46841 by maxmathsup by imad last updated on 01/Nov/18

calculate ∫_(π/4) ^(π/3)    (dx/(cosx sinx))

calculateπ4π3dxcosxsinx

Commented by maxmathsup by imad last updated on 01/Nov/18

we have I = ∫_(π/4) ^(π/3)    (dx/(cosxsinx)) =2  ∫_(π/4) ^(π/3)   (dx/(sin(2x))) =_(2x=t)    2 ∫_(π/2) ^((2π)/3)    (1/(sin(t))) (dt/2)  =∫_(π/2) ^((2π)/3)  (dt/(sint)) =_(tan((t/2))=u)     ∫_(tan((π/4))) ^(tan((π/3)))      (1/((2u)/(1+u^2 ))) ((2du)/(1+u^2 )) = ∫_1 ^(√3)    (du/u) =[ln∣u∣]_1 ^(√3)   =ln((√3)) =((ln(3))/2) .

wehaveI=π4π3dxcosxsinx=2π4π3dxsin(2x)=2x=t2π22π31sin(t)dt2=π22π3dtsint=tan(t2)=utan(π4)tan(π3)12u1+u22du1+u2=13duu=[lnu]13=ln(3)=ln(3)2.

Answered by tanmay.chaudhury50@gmail.com last updated on 01/Nov/18

∫_(π/4) ^(π/3) (dx/(cos^2 x×tanx))  ∫_(π/4) ^(π/3)  ((d(tanx))/(tanx))  ∣ln(tanx)∣_(π/4) ^(π/3)   =ln((√3) )−ln(1)  =(1/2)ln3

π4π3dxcos2x×tanxπ4π3d(tanx)tanxln(tanx)π4π3=ln(3)ln(1)=12ln3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com