Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 46842 by maxmathsup by imad last updated on 01/Nov/18

find  ∫     (dx/(x(√(x−x^2 ))))

finddxxxx2

Commented by maxmathsup by imad last updated on 01/Nov/18

we have x(√(x−x^2 ))=x(√(−x^2  +x))=x(√(−(x^2 −x)))=x(√(−(x^2 −2(x/2)+(1/4)−(1/4))))  =x(√((1/4)−(x−(1/2))^2 ))   so changement  x−(1/2)=(1/2)sint give  ∫   (dx/(x(√(x−x^2 )))) = ∫    (1/(2((1/2)+(1/2)sint)(1/2)cost)) cost dt  = ∫    ((2dt)/(1+sint)) =_(tan((t/2))=u)      ∫  (2/(1+((2u)/(1+u^2 )))) ((2du)/(1+u^2 ))  =4 ∫    (du/(1+u^2  +2u)) =4 ∫   (du/((u+1)^2 )) =−(4/(u+1)) +c =((−4)/(tan((t/2))+1)) +c but  sin(t)=2x−1 ⇒t =arcsin(2x−1) ⇒  I = ((−4)/(tan(((arcsin(2x−1))/2))+1)) +c .

wehavexxx2=xx2+x=x(x2x)=x(x22x2+1414)=x14(x12)2sochangementx12=12sintgivedxxxx2=12(12+12sint)12costcostdt=2dt1+sint=tan(t2)=u21+2u1+u22du1+u2=4du1+u2+2u=4du(u+1)2=4u+1+c=4tan(t2)+1+cbutsin(t)=2x1t=arcsin(2x1)I=4tan(arcsin(2x1)2)+1+c.

Answered by tanmay.chaudhury50@gmail.com last updated on 01/Nov/18

t=(1/x)   dx=((−1)/t^2 )dt  ∫((−dt)/(t^2 ×(1/t)×(√((1/t)−(1/t^2 )))))  ∫((−dt)/(t×(√((t−1)/t^2 ))))  ∫((−dt)/((√(t−1)) ))  =−1×(((t−1)^(1/2) )/(1/2))+c  =−2((1/x)−1)^(1/2) +c

t=1xdx=1t2dtdtt2×1t×1t1t2dtt×t1t2dtt1=1×(t1)1212+c=2(1x1)12+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com