All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 46850 by maxmathsup by imad last updated on 01/Nov/18
leta2>b2+c2calculate∫02πdθa+bsinθ+ccosθ
Commented bymaxmathsup by imad last updated on 01/Nov/18
residusmethodletI=∫02πdθa+bsinθ+ccosθchangementz=eiθgive I=∫∣z∣=11a+bz−z−12i+cz+z−12dziz=∫∣z∣=1dziz{a+bz−z−12i+cz+z−12} =∫∣z∣=12dzz{2ia+b(z−z−1)+ci(z+z−1)} =∫∣z∣=12dz2iaz+bz2−b+ciz2+ci=∫∣z∣=12dz(b+ci)z2+2iaz+ci−b letφ(z)=2(b+ci)z2+2iaz+ci−b.polesofφ? Δ′=(ia)2−(b+ci)(ci−b)=−a2−((ci)2−b2) =−a2+b2+c2=−(a2−(b2+c2))<0⇒z1=−ia+ia2−b2−c2b+ci z2=−ia−ia2−b2−c2b+ci ∣z1∣−1=∣a−a2−b2−c2∣b2+c2>1⇒z1isoutofcircle.⇒Res(φ,z1)=0 ∣z2∣−1=∣a+a2−b2−c2∣b2+c2>1⇒z2isoutofcircle⇒Res(φ,z2)=0 ∫02πφ(z)dz=0
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Nov/18
t=tanθ2dt=sec2θ2×12dθ dθ=2dt1+t2 ∫2dt(1+t2)(a+b×2t1+t2+c×1−t21+t2) ∫2dt(a+at2+2bt+c−ct2) 2∫dtt2(a−c)+t(2b)+a+c 2a−c∫dtt2+2.t.ba−c+a+ca−c 2a−c∫dt(t+ba−c)2+a+ca−c−b2(a−c)2 2a−c∫dt(t+ba−c)2+a2−c2−b2(a−c)2 2a−c×1a2−b2−c2(a−c)2×tan−1(t+ba−ca2−b2−c2(a−c)2) =2a2−b2−c2tan−1(t+ba−ca2−b2−c2(a−c)2) whenθ→0t→0 θ→2πt→0 thusvalueofinyregationzero plscheckwhereiamwrong.. sincea2>(b2+c2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com