Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 46850 by maxmathsup by imad last updated on 01/Nov/18

let a^2 >b^(2 ) +c^2   calculate ∫_0 ^(2π)   (dθ/(a+bsinθ +c cosθ))

leta2>b2+c2calculate02πdθa+bsinθ+ccosθ

Commented bymaxmathsup by imad last updated on 01/Nov/18

residus method  let I = ∫_0 ^(2π)    (dθ/(a+bsinθ +ccosθ))  changement z =e^(iθ)  give  I = ∫_(∣z∣=1)    (1/(a +b((z−z^(−1) )/(2i))+c((z+z^(−1) )/2))) (dz/(iz)) =∫_(∣z∣=1)   (dz/(iz{a+b((z−z^(−1) )/(2i))+c((z+z^(−1) )/2)}))  = ∫_(∣z∣=1)      ((2dz)/(z{2ia +b(z−z^(−1) )+ci(z+z^(−1) ) }))  = ∫_(∣z∣=1)     ((2dz)/(2iaz +bz^2 −b +ciz^2  +ci)) =∫_(∣z∣=1)    ((2dz)/((b+ci)z^2  +2iaz +ci−b))  let ϕ(z) =(2/((b+ci)z^2  +2iaz +ci−b)) .poles of ϕ?  Δ^′  =(ia)^2 −(b+ci)(ci−b) =−a^2  −((ci)^2 −b^2 )  =−a^2  +b^2  +c^2  =−(a^2 −(b^2  +c^2 ))<0 ⇒ z_1 =((−ia +i(√(a^2 −b^2 −c^2 )))/(b+ci))  z_2 =((−ia−i(√(a^2 −b^2 −c^2 )))/(b+ci))  ∣z_1 ∣−1 =((∣a−(√(a^2 −b^2 −c^2 ))∣)/(√(b^2  +c^2 ))) >1 ⇒z_1 is out of circle . ⇒Res(ϕ,z_1 )=0  ∣z_2 ∣−1 =((∣a+(√(a^2 −b^2 −c^2 ))∣ )/(√(b^2  +c^2 )))  >1 ⇒ z_2 is out of circle  ⇒Res(ϕ,z_(2 ) )=0  ∫_0 ^(2π)  ϕ(z)dz =0

residusmethodletI=02πdθa+bsinθ+ccosθchangementz=eiθgive I=z∣=11a+bzz12i+cz+z12dziz=z∣=1dziz{a+bzz12i+cz+z12} =z∣=12dzz{2ia+b(zz1)+ci(z+z1)} =z∣=12dz2iaz+bz2b+ciz2+ci=z∣=12dz(b+ci)z2+2iaz+cib letφ(z)=2(b+ci)z2+2iaz+cib.polesofφ? Δ=(ia)2(b+ci)(cib)=a2((ci)2b2) =a2+b2+c2=(a2(b2+c2))<0z1=ia+ia2b2c2b+ci z2=iaia2b2c2b+ci z11=aa2b2c2b2+c2>1z1isoutofcircle.Res(φ,z1)=0 z21=a+a2b2c2b2+c2>1z2isoutofcircleRes(φ,z2)=0 02πφ(z)dz=0

Answered by tanmay.chaudhury50@gmail.com last updated on 01/Nov/18

t=tan(θ/2)   dt=sec^2 (θ/2)×(1/2)dθ  dθ=((2dt)/(1+t^2 ))  ∫((2dt)/((1+t^2 )(a+b×((2t)/(1+t^2 ))+c×((1−t^2 )/(1+t^2 )))))  ∫((2dt)/((a+at^2 +2bt+c−ct^2 )))  2∫(dt/(t^2 (a−c)+t(2b)+a+c))  (2/(a−c))∫(dt/(t^2 +2.t.(b/(a−c))+((a+c)/(a−c))))  (2/(a−c))∫(dt/((t+(b/(a−c)))^2 +((a+c)/(a−c))−(b^2 /((a−c)^2 ))))  (2/(a−c))∫(dt/((t+(b/(a−c)))^2 +((a^2 −c^2 −b^2 )/((a−c)^2 ))))  (2/(a−c))×(1/(√((a^2 −b^2 −c^2 )/((a−c)^2 ))))×tan^(−1) (((t+(b/(a−c)))/(√((a^2 −b^2 −c2)/((a−c)^2 )))))  =(2/(√(a^2 −b^2 −c^2 )))tan^(−1) (((t+(b/(a−c)))/(√(((a^2 −b^2 −c^2 )/((a−c)^2 )) ))))  when θ→0  t→0  θ→2π  t→0  thus value of inyregation zero  pls check where i am wrong..  since a^2 >(b^2 +c^2 )

t=tanθ2dt=sec2θ2×12dθ dθ=2dt1+t2 2dt(1+t2)(a+b×2t1+t2+c×1t21+t2) 2dt(a+at2+2bt+cct2) 2dtt2(ac)+t(2b)+a+c 2acdtt2+2.t.bac+a+cac 2acdt(t+bac)2+a+cacb2(ac)2 2acdt(t+bac)2+a2c2b2(ac)2 2ac×1a2b2c2(ac)2×tan1(t+baca2b2c2(ac)2) =2a2b2c2tan1(t+baca2b2c2(ac)2) whenθ0t0 θ2πt0 thusvalueofinyregationzero plscheckwhereiamwrong.. sincea2>(b2+c2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com