Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 47034 by 23kpratik last updated on 04/Nov/18

find angel between spheres x^2 +y^2 +z^2 =29, x^2 +y^2 +z^2 +4x−6y−8z−47=0  (4,−3,2)

$${find}\:{angel}\:{between}\:{spheres}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{29},\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{6}{y}−\mathrm{8}{z}−\mathrm{47}=\mathrm{0}\:\:\left(\mathrm{4},−\mathrm{3},\mathrm{2}\right) \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 04/Nov/18

point (4,−3,2) satisfy both eqn of sphere  now let p_1 be the tangent plane though(4,−3,2)  with respect to first sphere and similarly  p_2  be the tangent plane with respect to 2nd sphere  determinanation of eqn plane p_1 and plane p_2   and angle between p_1 and p_2  is the required angle  first sphere eqn...  x^2 +y^2 +z^2 =29    centre c_1 (0,0,0)   radius r_1 ((√(29)) )  direction ratio bdtween (0,0,0) and (4,−3,2) is    formula {(x_2 −x_1 ),(y_2 −y_1 ),(z_2 −z_1 )}=4,−3,2  so eqn of plane p_(1 ) is  formula A(x−x_1 )+B(y−y_1 )+C(z−z_1 )=0  A,B,C  are direction ratio  plane p_1  is 4(x−4)−3(y+3)+2(z−2)=0  4x−3y+2z−16−9−4=0  4x−3y+2z=29   ←plane p_1   the 2nd sphre x^2 +y^2 +z^2 +4x−6y−8z−47=0  centre (−2,3,4)  direction ratio between (4,−3,2) and(−2,3,4)  (6,−6,−2)  eqn of second plane p_2 tangent to second sphere  is A(x−x_1 )+B(y−y_1 )+C(z−z_1 )=0  6(x−4)−6(y+3)−2(z−2)=0  6x−6y−2z−24−18+4=0  6x−6y−2z=38←plane p_2   let required angle is θ  formula  cosθ=((a_1 a_2 +b_1 b_2 +c_1 c_2 )/((√(a_1 ^2 +b_1 ^2 +c_1 ^2 ))  ×(√(a_2 ^2 +b_2 ^2 +c_2 ^2 ))))   cosθ=(((6×4)+(−6×−3)+(−2×2))/((√((4)^2 +(−3)^2 +(2)^2 )) ×(√((6)^2 +(−6)^2 +(−2)^2 )) ))  cosθ=((38)/((√(29)) ×(√(76))))  θ=cos^(−1) (((38)/((√(29)) ×(√(76)))))

$${point}\:\left(\mathrm{4},−\mathrm{3},\mathrm{2}\right)\:{satisfy}\:{both}\:{eqn}\:{of}\:{sphere} \\ $$$${now}\:{let}\:{p}_{\mathrm{1}} {be}\:{the}\:{tangent}\:{plane}\:{though}\left(\mathrm{4},−\mathrm{3},\mathrm{2}\right) \\ $$$${with}\:{respect}\:{to}\:{first}\:{sphere}\:{and}\:{similarly} \\ $$$${p}_{\mathrm{2}} \:{be}\:{the}\:{tangent}\:{plane}\:{with}\:{respect}\:{to}\:\mathrm{2}{nd}\:{sphere} \\ $$$${determinanation}\:{of}\:{eqn}\:{plane}\:{p}_{\mathrm{1}} {and}\:{plane}\:{p}_{\mathrm{2}} \\ $$$${and}\:{angle}\:{between}\:{p}_{\mathrm{1}} {and}\:{p}_{\mathrm{2}} \:{is}\:{the}\:{required}\:{angle} \\ $$$${first}\:{sphere}\:{eqn}... \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{29}\:\:\:\:{centre}\:{c}_{\mathrm{1}} \left(\mathrm{0},\mathrm{0},\mathrm{0}\right)\:\:\:{radius}\:{r}_{\mathrm{1}} \left(\sqrt{\mathrm{29}}\:\right) \\ $$$${direction}\:{ratio}\:{bdtween}\:\left(\mathrm{0},\mathrm{0},\mathrm{0}\right)\:{and}\:\left(\mathrm{4},−\mathrm{3},\mathrm{2}\right)\:{is} \\ $$$$\:\:{formula}\:\left\{\left({x}_{\mathrm{2}} −{x}_{\mathrm{1}} \right),\left({y}_{\mathrm{2}} −{y}_{\mathrm{1}} \right),\left({z}_{\mathrm{2}} −{z}_{\mathrm{1}} \right)\right\}=\mathrm{4},−\mathrm{3},\mathrm{2} \\ $$$${so}\:{eqn}\:{of}\:{plane}\:{p}_{\mathrm{1}\:} {is} \\ $$$${formula}\:{A}\left({x}−{x}_{\mathrm{1}} \right)+{B}\left({y}−{y}_{\mathrm{1}} \right)+{C}\left({z}−{z}_{\mathrm{1}} \right)=\mathrm{0} \\ $$$${A},{B},{C}\:\:{are}\:{direction}\:{ratio} \\ $$$${plane}\:{p}_{\mathrm{1}} \:{is}\:\mathrm{4}\left({x}−\mathrm{4}\right)−\mathrm{3}\left({y}+\mathrm{3}\right)+\mathrm{2}\left({z}−\mathrm{2}\right)=\mathrm{0} \\ $$$$\mathrm{4}{x}−\mathrm{3}{y}+\mathrm{2}{z}−\mathrm{16}−\mathrm{9}−\mathrm{4}=\mathrm{0} \\ $$$$\mathrm{4}{x}−\mathrm{3}{y}+\mathrm{2}{z}=\mathrm{29}\:\:\:\leftarrow{plane}\:{p}_{\mathrm{1}} \\ $$$${the}\:\mathrm{2}{nd}\:{sphre}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{6}{y}−\mathrm{8}{z}−\mathrm{47}=\mathrm{0} \\ $$$${centre}\:\left(−\mathrm{2},\mathrm{3},\mathrm{4}\right) \\ $$$${direction}\:{ratio}\:{between}\:\left(\mathrm{4},−\mathrm{3},\mathrm{2}\right)\:{and}\left(−\mathrm{2},\mathrm{3},\mathrm{4}\right) \\ $$$$\left(\mathrm{6},−\mathrm{6},−\mathrm{2}\right) \\ $$$${eqn}\:{of}\:{second}\:{plane}\:{p}_{\mathrm{2}} {tangent}\:{to}\:{second}\:{sphere} \\ $$$${is}\:{A}\left({x}−{x}_{\mathrm{1}} \right)+{B}\left({y}−{y}_{\mathrm{1}} \right)+{C}\left({z}−{z}_{\mathrm{1}} \right)=\mathrm{0} \\ $$$$\mathrm{6}\left({x}−\mathrm{4}\right)−\mathrm{6}\left({y}+\mathrm{3}\right)−\mathrm{2}\left({z}−\mathrm{2}\right)=\mathrm{0} \\ $$$$\mathrm{6}{x}−\mathrm{6}{y}−\mathrm{2}{z}−\mathrm{24}−\mathrm{18}+\mathrm{4}=\mathrm{0} \\ $$$$\mathrm{6}{x}−\mathrm{6}{y}−\mathrm{2}{z}=\mathrm{38}\leftarrow{plane}\:{p}_{\mathrm{2}} \\ $$$${let}\:{required}\:{angle}\:{is}\:\theta \\ $$$${formula} \\ $$$${cos}\theta=\frac{{a}_{\mathrm{1}} {a}_{\mathrm{2}} +{b}_{\mathrm{1}} {b}_{\mathrm{2}} +{c}_{\mathrm{1}} {c}_{\mathrm{2}} }{\sqrt{{a}_{\mathrm{1}} ^{\mathrm{2}} +{b}_{\mathrm{1}} ^{\mathrm{2}} +{c}_{\mathrm{1}} ^{\mathrm{2}} }\:\:×\sqrt{{a}_{\mathrm{2}} ^{\mathrm{2}} +{b}_{\mathrm{2}} ^{\mathrm{2}} +{c}_{\mathrm{2}} ^{\mathrm{2}} }}\: \\ $$$${cos}\theta=\frac{\left(\mathrm{6}×\mathrm{4}\right)+\left(−\mathrm{6}×−\mathrm{3}\right)+\left(−\mathrm{2}×\mathrm{2}\right)}{\sqrt{\left(\mathrm{4}\right)^{\mathrm{2}} +\left(−\mathrm{3}\right)^{\mathrm{2}} +\left(\mathrm{2}\right)^{\mathrm{2}} }\:×\sqrt{\left(\mathrm{6}\right)^{\mathrm{2}} +\left(−\mathrm{6}\right)^{\mathrm{2}} +\left(−\mathrm{2}\right)^{\mathrm{2}} }\:} \\ $$$${cos}\theta=\frac{\mathrm{38}}{\sqrt{\mathrm{29}}\:×\sqrt{\mathrm{76}}} \\ $$$$\theta={cos}^{−\mathrm{1}} \left(\frac{\mathrm{38}}{\sqrt{\mathrm{29}}\:×\sqrt{\mathrm{76}}}\right) \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com