Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 47182 by maxmathsup by imad last updated on 05/Nov/18

calculate ∫_0 ^1  e^(−x) (√(1−(√x)))dx

calculate01ex1xdx

Commented by tanmay.chaudhury50@gmail.com last updated on 07/Nov/18

Commented by tanmay.chaudhury50@gmail.com last updated on 07/Nov/18

graph of e^(−x) (√(1−(√x) ))  0.50 >∫_0 ^1 e^(−x) (√(1−(√x)))  dx>0

graphofex1x0.50>01ex1xdx>0

Commented by maxmathsup by imad last updated on 11/Nov/18

let determine a approximat value of A =∫_0 ^1  e^(−x) (√(1−(√x)))dx we have  e^u =1+(u/(1!)) +(u^2 /(2!)) +....⇒e^(−x) =1−x +(x^2 /2) −...⇒0≤ e^(−x) ≤1−x+(x^2 /2) ⇒  0≤e^(−x) (√(1−(√x)))≤(1−x+(x^2 /2))(√(1−(√x))) ⇒0≤ ∫_0 ^1  e^(−x) (√(1−(√x)))dx≤∫_0 ^1 (1−x+(x^2 /2))(√(1−(√x)))dx  changement (√(1−(√x)))=t give 1−(√x)=t^2  ⇒(√x)=1−t^2  ⇒x=(1−t^2 )^2 =t^4 −2t^2  +1 ⇒  ∫_0 ^1 (1−x+(x^2 /2))(√(1−(√x)))dx=−∫_0 ^1 (1−t^4 +2t^2 −1 +(((t^4 −2t^2 +1)^2 )/2))t(4t^3 −4t)dt  =−2 ∫_0 ^1 (−2t^4  +4t^2  +( t^8 +4t^4  +1 +2(−2t^6  +t^4 −2t^2 )(t^4 −t^2 )dt  =−2 ∫_0 ^1 (−2t^4  +4t^2  +t^8  +6t^4  −4t^6 −4t^2  +1)(t^4 −t^2 )dt  =−2 ∫_0 ^1 (t^8 −4t^6 −2t^4 −4t^2 +1)(t^4 −t^2 )dt  =−2 ∫_0 ^1 ( t^(12) −t^(10) −4t^(10)  +4t^8  −2t^8  +2t^6 −4t^6  +4t^4 )dt  =−2 ∫_0 ^1 (t^(12) −5t^(10)  +2t^8  −2t^6  +4t^4 )dt  =−2[(t^(13) /(13)) −((5t^(11) )/(11)) +((2t^9 )/9) −((2t^7 )/7) +((4t^5 )/5)]_0 ^1   =−2( (1/(13)) −(5/(11)) +(2/9) −(2/7) +(4/5))=−(2/(13)) +((10)/(11)) −(4/9) +(4/7) −(8/5) =α_0  ⇒0< A≤α_0

letdetermineaapproximatvalueofA=01ex1xdxwehaveeu=1+u1!+u22!+....ex=1x+x22...0ex1x+x220ex1x(1x+x22)1x001ex1xdx01(1x+x22)1xdxchangement1x=tgive1x=t2x=1t2x=(1t2)2=t42t2+101(1x+x22)1xdx=01(1t4+2t21+(t42t2+1)22)t(4t34t)dt=201(2t4+4t2+(t8+4t4+1+2(2t6+t42t2)(t4t2)dt=201(2t4+4t2+t8+6t44t64t2+1)(t4t2)dt=201(t84t62t44t2+1)(t4t2)dt=201(t12t104t10+4t82t8+2t64t6+4t4)dt=201(t125t10+2t82t6+4t4)dt=2[t13135t1111+2t992t77+4t55]01=2(113511+2927+45)=213+101149+4785=α00<Aα0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com