Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 4724 by 123456 last updated on 29/Feb/16

how the gravity work on a R^4  universe?  does any R^3  people will be atracted by  some “ghost” object?

$$\mathrm{how}\:\mathrm{the}\:\mathrm{gravity}\:\mathrm{work}\:\mathrm{on}\:\mathrm{a}\:\mathbb{R}^{\mathrm{4}} \:\mathrm{universe}? \\ $$$$\mathrm{does}\:\mathrm{any}\:\mathbb{R}^{\mathrm{3}} \:\mathrm{people}\:\mathrm{will}\:\mathrm{be}\:\mathrm{atracted}\:\mathrm{by} \\ $$$$\mathrm{some}\:``\mathrm{ghost}''\:\mathrm{object}? \\ $$

Commented by Yozzii last updated on 29/Feb/16

R^4  is the domain giving the field F  of positions u=(a_1 ,a_2 ,a_3 ,a_4 ) in   4−dimensional space. Gravity g is a  vector which hence must be able to  act along any straight line in F. We  can write g=(g_1 (a_1 ),g_2 (a_2 ),g_3 (a_3 ),g_4 (a_4 ))  where g_i    (1≤i≤4) are gravitational  force functions of position relative to a  body of mass M. In R^3  gravity is  dependent on the masses m_i  involved  and position. We′d then expect that  g_i  are dependent on the positions of  bodies and their masses. Rewriting g  we have   g= (((g_1 (m,M,a_1 ,b_1 ))),((g_2 (m,M,a_2 ,b_2 ))),((g_3 (m,M,a_3 ,b_3 ))),((g_4 (m,M,a_4 ,b_4 ))) )  .

$$\mathbb{R}^{\mathrm{4}} \:{is}\:{the}\:{domain}\:{giving}\:{the}\:{field}\:{F} \\ $$$${of}\:{positions}\:\boldsymbol{{u}}=\left({a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,{a}_{\mathrm{3}} ,{a}_{\mathrm{4}} \right)\:{in}\: \\ $$$$\mathrm{4}−{dimensional}\:{space}.\:{Gravity}\:\boldsymbol{{g}}\:{is}\:{a} \\ $$$${vector}\:{which}\:{hence}\:{must}\:{be}\:{able}\:{to} \\ $$$${act}\:{along}\:{any}\:{straight}\:{line}\:{in}\:{F}.\:{We} \\ $$$${can}\:{write}\:\boldsymbol{{g}}=\left({g}_{\mathrm{1}} \left({a}_{\mathrm{1}} \right),{g}_{\mathrm{2}} \left({a}_{\mathrm{2}} \right),{g}_{\mathrm{3}} \left({a}_{\mathrm{3}} \right),{g}_{\mathrm{4}} \left({a}_{\mathrm{4}} \right)\right) \\ $$$${where}\:{g}_{{i}} \:\:\:\left(\mathrm{1}\leqslant{i}\leqslant\mathrm{4}\right)\:{are}\:{gravitational} \\ $$$${force}\:{functions}\:{of}\:{position}\:{relative}\:{to}\:{a} \\ $$$${body}\:{of}\:{mass}\:{M}.\:{In}\:\mathbb{R}^{\mathrm{3}} \:{gravity}\:{is} \\ $$$${dependent}\:{on}\:{the}\:{masses}\:{m}_{{i}} \:{involved} \\ $$$${and}\:{position}.\:{We}'{d}\:{then}\:{expect}\:{that} \\ $$$${g}_{{i}} \:{are}\:{dependent}\:{on}\:{the}\:{positions}\:{of} \\ $$$${bodies}\:{and}\:{their}\:{masses}.\:{Rewriting}\:\boldsymbol{{g}} \\ $$$${we}\:{have}\: \\ $$$$\boldsymbol{{g}}=\begin{pmatrix}{{g}_{\mathrm{1}} \left({m},{M},{a}_{\mathrm{1}} ,{b}_{\mathrm{1}} \right)}\\{{g}_{\mathrm{2}} \left({m},{M},{a}_{\mathrm{2}} ,{b}_{\mathrm{2}} \right)}\\{{g}_{\mathrm{3}} \left({m},{M},{a}_{\mathrm{3}} ,{b}_{\mathrm{3}} \right)}\\{{g}_{\mathrm{4}} \left({m},{M},{a}_{\mathrm{4}} ,{b}_{\mathrm{4}} \right)}\end{pmatrix}\:\:. \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com