Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 47266 by MrW3 last updated on 07/Nov/18

Commented by MrW3 last updated on 07/Nov/18

Find the moment of initia of the  solid body about its diagonal axis.

$${Find}\:{the}\:{moment}\:{of}\:{initia}\:{of}\:{the} \\ $$$${solid}\:{body}\:{about}\:{its}\:{diagonal}\:{axis}. \\ $$

Answered by ajfour last updated on 08/Nov/18

L_G ^�  = ∫r^� ×(ω^� ×r^� )dm   G being the centroid (mass center)  and origin of x, y, z  axes is G.      L_G = ∫[(r^� .r^� )ω^�  −(ω^� .r^� )r^� ]dm     l^�  = ai^� +bj^� +ck^�  ; r^� =xi^� +yj^� +zk^�     ω^�  = ω((l^� /l))     L^� =(ω/l)∫[(ai^� +bj^� +ck^� )(x^2 +y^2 +z^2 )       −(xi^� +yj^� +zk^� )(ax+by+cz)]dm    =(ω/l)∫ Σ{[a(y^2 +z^2 )−x(by+cz)]i^� }dm   = ((𝛒 ω)/l)∫_(−c/2) ^(  c/2) ∫_(−b/2) ^(  b/2) ∫_(−a/2) ^(  a/2) ( Σ{[a(y^2 +z^2 )−x(by+cz)]i^� )dxdydz   =((ρ ω)/l)∫∫_(−b/2) ^(  b/2) (Σ{a^2 (y^2 +z^2 )}i^� )dydz   =((ρω)/l)∫_(−c/2) ^(  c/2) (Σ{a^2 ((b^3 /(12))+bz^2 )}i^� )dz   =((ρω)/l)Σ{a^2 (((b^3 c)/(12))+((bc^3 )/(12)))}i^�   = ((ρ ω)/l)Σ{a[((abc)/(12))(b^2 +c^2 )]}i^�   =((ρω)/l)×((abc)/(12)){a(b^2 +c^2 )i^� +b(c^2 +a^2 )j^�                                +c(a^2 +b^2 )k^�  }  L_G ^�  = ((ρabcω)/(12(√(a^2 +b^2 +c^2 ))))Σ{a(b^2 +c^2 )i^� }  and since ρabc = M  L_G ^�  =  ((Mω)/(12(√(a^2 +b^2 +c^2 ))))Σ{a(b^2 +c^2 )i^� }  Generally  L_G ^� = ∫r^� ×(ω^� ×r^� )dm      = ∫(xi^� +yj^� +zk^� )× determinant ((i^� ,j^� ,k^� ),(ω_x ,ω_y ,ω_z ),(x,y,z))dm    =∫ determinant ((i^� ,j^� ,k^� ),(x,y,z),((ω_y z−ω_z y),(ω_z x−ω_x z),(ω_x y−ω_y x)))dm    =Σ[∫{y(ω_x y−ω_y x)−z(ω_z x−ω_x z)}dm]i^�     =Σ[∫{ω_x (y^2 +z^2 )−ω_y (xy)−ω_z (zx)}dm]i^�    and since       I_x =∫(y^2 +z^2 )dm        I_(xy)  = ∫xydm  L_x  = I_x ω_x −I_(xy) ω_y −I_(zx) ω_z   L_y  = −I_(xy) ω_x +I_y ω_y −I_(yz) ω_z   L_z  = −I_(zx) ω_x −I_(yz) ω_y +I_z ω_z       Inertia tensor is                ((I_x ,(−I_(xy) ),(−I_(zx) )),((−I_(xy) ),I_y ,(−I_(yz) )),((−I_(zx) ),(−I_(yz) ),I_z ) )  For this very question      Inertia tensor is    ((((M/(12))(b^2 +c^2 )),0,0),(0,((M/(12))(c^2 +a^2 )),0),(0,0,((M/(12))(a^2 +b^2 ))) )   If chosen coordinate system is  Gxyz , the pricipal axes of inertia_(−−−−−−−−−−−−−−−−) ,  then the centroidal mass products  of inertia of a body with respect  to these prinxipal axes of inertia,  are zero. I_(xy) = I_(yz)  = I_(zx) = 0 .  And  I_x , I_y , I_z  are called the  principal centroidal moments  of ineetia of the body.  About any other point fixed point O    L_O ^�  = r^� ×mv_(cm) ^� +L_G ^�     r^�  being the position vector of G  relative to O.  _________________________.

$$\bar {{L}}_{{G}} \:=\:\int\bar {{r}}×\left(\bar {\omega}×\bar {{r}}\right){dm} \\ $$$$\:{G}\:{being}\:{the}\:{centroid}\:\left({mass}\:{center}\right) \\ $$$${and}\:{origin}\:{of}\:{x},\:{y},\:{z}\:\:{axes}\:{is}\:{G}. \\ $$$$\:\:\:\:{L}_{{G}} =\:\int\left[\left(\bar {{r}}.\bar {{r}}\right)\bar {\omega}\:−\left(\bar {\omega}.\bar {{r}}\right)\bar {{r}}\right]{dm} \\ $$$$\:\:\:\bar {{l}}\:=\:{a}\hat {{i}}+{b}\hat {{j}}+{c}\hat {{k}}\:;\:\bar {{r}}={x}\hat {{i}}+{y}\hat {{j}}+{z}\hat {{k}} \\ $$$$\:\:\bar {\omega}\:=\:\omega\left(\frac{\bar {{l}}}{{l}}\right) \\ $$$$\:\:\:\bar {{L}}=\frac{\omega}{{l}}\int\left[\left({a}\hat {{i}}+{b}\hat {{j}}+{c}\hat {{k}}\right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)\right. \\ $$$$\left.\:\:\:\:\:−\left({x}\hat {{i}}+{y}\hat {{j}}+{z}\hat {{k}}\right)\left({ax}+{by}+{cz}\right)\right]{dm} \\ $$$$\:\:=\frac{\omega}{{l}}\int\:\Sigma\left\{\left[{a}\left({y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)−{x}\left({by}+{cz}\right)\right]\hat {{i}}\right\}{dm} \\ $$$$\:=\:\frac{\boldsymbol{\rho}\:\omega}{{l}}\int_{−{c}/\mathrm{2}} ^{\:\:{c}/\mathrm{2}} \int_{−{b}/\mathrm{2}} ^{\:\:{b}/\mathrm{2}} \int_{−{a}/\mathrm{2}} ^{\:\:{a}/\mathrm{2}} \left(\:\Sigma\left\{\left[{a}\left({y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)−{x}\left({by}+{cz}\right)\right]\hat {{i}}\right){dxdydz}\right. \\ $$$$\:=\frac{\rho\:\omega}{{l}}\int\int_{−{b}/\mathrm{2}} ^{\:\:{b}/\mathrm{2}} \left(\Sigma\left\{{a}^{\mathrm{2}} \left({y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)\right\}\hat {{i}}\right){dydz} \\ $$$$\:=\frac{\rho\omega}{{l}}\int_{−{c}/\mathrm{2}} ^{\:\:{c}/\mathrm{2}} \left(\Sigma\left\{{a}^{\mathrm{2}} \left(\frac{{b}^{\mathrm{3}} }{\mathrm{12}}+{bz}^{\mathrm{2}} \right)\right\}\hat {{i}}\right){dz} \\ $$$$\:=\frac{\rho\omega}{{l}}\Sigma\left\{{a}^{\mathrm{2}} \left(\frac{{b}^{\mathrm{3}} {c}}{\mathrm{12}}+\frac{{bc}^{\mathrm{3}} }{\mathrm{12}}\right)\right\}\hat {{i}} \\ $$$$=\:\frac{\rho\:\omega}{{l}}\Sigma\left\{{a}\left[\frac{{abc}}{\mathrm{12}}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\right]\right\}\hat {{i}} \\ $$$$=\frac{\rho\omega}{{l}}×\frac{{abc}}{\mathrm{12}}\left\{{a}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\hat {{i}}+{b}\left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)\hat {{j}}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{c}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\hat {{k}}\:\right\} \\ $$$$\bar {{L}}_{{G}} \:=\:\frac{\rho{abc}\omega}{\mathrm{12}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }}\Sigma\left\{{a}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\hat {{i}}\right\} \\ $$$${and}\:{since}\:\rho{abc}\:=\:{M} \\ $$$$\bar {{L}}_{{G}} \:=\:\:\frac{{M}\omega}{\mathrm{12}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }}\Sigma\left\{{a}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\hat {{i}}\right\} \\ $$$${Generally} \\ $$$$\bar {{L}}_{{G}} =\:\int\bar {{r}}×\left(\bar {\omega}×\bar {{r}}\right){dm} \\ $$$$ \\ $$$$\:\:=\:\int\left({x}\hat {{i}}+{y}\hat {{j}}+{z}\hat {{k}}\right)×\begin{vmatrix}{\hat {{i}}}&{\hat {{j}}}&{\hat {{k}}}\\{\omega_{{x}} }&{\omega_{{y}} }&{\omega_{{z}} }\\{{x}}&{{y}}&{{z}}\end{vmatrix}{dm} \\ $$$$\:\:=\int\begin{vmatrix}{\hat {{i}}}&{\hat {{j}}}&{\hat {{k}}}\\{{x}}&{{y}}&{{z}}\\{\omega_{{y}} {z}−\omega_{{z}} {y}}&{\omega_{{z}} {x}−\omega_{{x}} {z}}&{\omega_{{x}} {y}−\omega_{{y}} {x}}\end{vmatrix}{dm} \\ $$$$\:\:=\Sigma\left[\int\left\{{y}\left(\omega_{{x}} {y}−\omega_{{y}} {x}\right)−{z}\left(\omega_{{z}} {x}−\omega_{{x}} {z}\right)\right\}{dm}\right]\hat {{i}} \\ $$$$\:\:=\Sigma\left[\int\left\{\omega_{{x}} \left({y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)−\omega_{{y}} \left({xy}\right)−\omega_{{z}} \left({zx}\right)\right\}{dm}\right]\hat {{i}} \\ $$$$\:{and}\:{since} \\ $$$$\:\:\:\:\:{I}_{{x}} =\int\left({y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right){dm} \\ $$$$\:\:\:\:\:\:{I}_{{xy}} \:=\:\int{xydm} \\ $$$${L}_{{x}} \:=\:{I}_{{x}} \omega_{{x}} −{I}_{{xy}} \omega_{{y}} −{I}_{{zx}} \omega_{{z}} \\ $$$${L}_{{y}} \:=\:−{I}_{{xy}} \omega_{{x}} +{I}_{{y}} \omega_{{y}} −{I}_{{yz}} \omega_{{z}} \\ $$$${L}_{{z}} \:=\:−{I}_{{zx}} \omega_{{x}} −{I}_{{yz}} \omega_{{y}} +{I}_{{z}} \omega_{{z}} \\ $$$$\:\:\:\:{Inertia}\:{tensor}\:{is} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{pmatrix}{{I}_{{x}} }&{−{I}_{{xy}} }&{−{I}_{{zx}} }\\{−{I}_{{xy}} }&{{I}_{{y}} }&{−{I}_{{yz}} }\\{−{I}_{{zx}} }&{−{I}_{{yz}} }&{{I}_{{z}} }\end{pmatrix} \\ $$$${For}\:{this}\:{very}\:{question} \\ $$$$\:\:\:\:{Inertia}\:{tensor}\:{is} \\ $$$$\:\begin{pmatrix}{\frac{{M}}{\mathrm{12}}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\frac{{M}}{\mathrm{12}}\left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\frac{{M}}{\mathrm{12}}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}\end{pmatrix}\: \\ $$$${If}\:{chosen}\:{coordinate}\:{system}\:{is} \\ $$$${Gxyz}\:,\:{the}\:\underset{−−−−−−−−−−−−−−−−} {{pricipal}\:{axes}\:{of}\:{inertia}}, \\ $$$${then}\:{the}\:{centroidal}\:{mass}\:{products} \\ $$$${of}\:{inertia}\:{of}\:{a}\:{body}\:{with}\:{respect} \\ $$$${to}\:{these}\:{prinxipal}\:{axes}\:{of}\:{inertia}, \\ $$$${are}\:{zero}.\:{I}_{{xy}} =\:{I}_{{yz}} \:=\:{I}_{{zx}} =\:\mathrm{0}\:. \\ $$$${And}\:\:{I}_{{x}} ,\:{I}_{{y}} ,\:{I}_{{z}} \:{are}\:{called}\:{the} \\ $$$${principal}\:{centroidal}\:{moments} \\ $$$${of}\:{ineetia}\:{of}\:{the}\:{body}. \\ $$$${About}\:{any}\:{other}\:{point}\:{fixed}\:{point}\:{O} \\ $$$$\:\:\bar {{L}}_{{O}} \:=\:\bar {{r}}×{m}\bar {{v}}_{{cm}} +\bar {{L}}_{{G}} \\ $$$$\:\:\bar {{r}}\:{being}\:{the}\:{position}\:{vector}\:{of}\:{G} \\ $$$${relative}\:{to}\:{O}. \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_. \\ $$

Commented by MrW3 last updated on 07/Nov/18

thank you sir!  Does it mean the MoI about the   diagonal axis is I=I_x +I_y +I_z   =((2M(a^2 +b^2 +c^2 ))/3)?

$${thank}\:{you}\:{sir}! \\ $$$${Does}\:{it}\:{mean}\:{the}\:{MoI}\:{about}\:{the}\: \\ $$$${diagonal}\:{axis}\:{is}\:{I}={I}_{{x}} +{I}_{{y}} +{I}_{{z}} \\ $$$$=\frac{\mathrm{2}{M}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)}{\mathrm{3}}? \\ $$

Commented by ajfour last updated on 08/Nov/18

No, MoI will be a tensor for  asymmetric orientations  (9 components)  We need MoI to know angular  momentum:  For x- component L_x  , we just  need to attach ω_x , ω_y , and ω_z    respectively to each element in  first row of the inertia tensor  found.   similarly for L_y  and L_z  we shall  rather use respectively the 2^(nd)   and 3^(rd)  row.   L_x  =Mω_x ( ((b^2 +c^2 )/(12)))   L_x = ((Mω)/(√(a^2 +b^2 +c^2 ))){a(((b^2 +c^2 )/(12)))}   L_x =((Mωa(b^2 +c^2 ))/(12(√(a^2 +b^2 +c^2 ))))   = ((Mω)/(12))(b^2 +c^2 )cos α   α being angle of diagonal with    x- axes.  So L_(diagonal) =ΣL_x cos α   = ((Mω)/(12))[((a^2 (b^2 +c^2 )+b^2 (c^2 +a^2 )+c^2 (a^2 +b^2 ))/(a^2 +b^2 +c^2 ))]     If b=c=a   we get    I_(diagonal) = ((Ma^2 )/6)   .

$${No},\:{MoI}\:{will}\:{be}\:{a}\:{tensor}\:{for} \\ $$$${asymmetric}\:{orientations} \\ $$$$\left(\mathrm{9}\:{components}\right) \\ $$$${We}\:{need}\:{MoI}\:{to}\:{know}\:{angular} \\ $$$${momentum}: \\ $$$${For}\:{x}-\:{component}\:{L}_{{x}} \:,\:{we}\:{just} \\ $$$${need}\:{to}\:{attach}\:\omega_{{x}} ,\:\omega_{{y}} ,\:{and}\:\omega_{{z}} \: \\ $$$${respectively}\:{to}\:{each}\:{element}\:{in} \\ $$$${first}\:{row}\:{of}\:{the}\:{inertia}\:{tensor} \\ $$$${found}. \\ $$$$\:{similarly}\:{for}\:{L}_{{y}} \:{and}\:{L}_{{z}} \:{we}\:{shall} \\ $$$${rather}\:{use}\:{respectively}\:{the}\:\mathrm{2}^{{nd}} \\ $$$${and}\:\mathrm{3}^{{rd}} \:{row}. \\ $$$$\:{L}_{{x}} \:={M}\omega_{{x}} \left(\:\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{12}}\right) \\ $$$$\:{L}_{{x}} =\:\frac{{M}\omega}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }}\left\{{a}\left(\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{12}}\right)\right\} \\ $$$$\:{L}_{{x}} =\frac{{M}\omega{a}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)}{\mathrm{12}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }}\:\:\:=\:\frac{{M}\omega}{\mathrm{12}}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\mathrm{cos}\:\alpha \\ $$$$\:\alpha\:{being}\:{angle}\:{of}\:{diagonal}\:{with} \\ $$$$\:\:{x}-\:{axes}. \\ $$$${So}\:{L}_{{diagonal}} =\Sigma{L}_{{x}} \mathrm{cos}\:\alpha \\ $$$$\:=\:\frac{{M}\omega}{\mathrm{12}}\left[\frac{{a}^{\mathrm{2}} \left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)+{b}^{\mathrm{2}} \left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)+{c}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }\right]\: \\ $$$$\:\:{If}\:{b}={c}={a}\:\:\:{we}\:{get} \\ $$$$\:\:{I}_{{diagonal}} =\:\frac{{Ma}^{\mathrm{2}} }{\mathrm{6}}\:\:\:. \\ $$

Commented by mr W last updated on 07/Nov/18

thanks alot sir!

$${thanks}\:{alot}\:{sir}! \\ $$

Commented by mr W last updated on 07/Nov/18

It′s a new ID sir. I can not get the oldest  back any more.

$${It}'{s}\:{a}\:{new}\:{ID}\:{sir}.\:{I}\:{can}\:{not}\:{get}\:{the}\:{oldest} \\ $$$${back}\:{any}\:{more}. \\ $$

Commented by ajfour last updated on 08/Nov/18

Previously i had obtained MoI  about a corner point on the   diagonal axis. Now its about  G(mass center) that still lies  on the diagonal axis (in this  question).

$${Previously}\:{i}\:{had}\:{obtained}\:{MoI} \\ $$$${about}\:{a}\:{corner}\:{point}\:{on}\:{the}\: \\ $$$${diagonal}\:{axis}.\:{Now}\:{its}\:{about} \\ $$$${G}\left({mass}\:{center}\right)\:{that}\:{still}\:{lies} \\ $$$${on}\:{the}\:{diagonal}\:{axis}\:\left({in}\:{this}\right. \\ $$$$\left.{question}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com