Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 47291 by MJS last updated on 07/Nov/18

solve for x∈C:  ∣x−(3/4)∣×∣x+(5/4)∣=3

$$\mathrm{solve}\:\mathrm{for}\:{x}\in\mathbb{C}: \\ $$$$\mid{x}−\frac{\mathrm{3}}{\mathrm{4}}\mid×\mid{x}+\frac{\mathrm{5}}{\mathrm{4}}\mid=\mathrm{3} \\ $$

Answered by MrW3 last updated on 08/Nov/18

let x+(1/4)=a+bi  ∣x−(3/4)∣×∣x+(5/4)∣=3  (√((a−1)^2 +b^2 ))×(√((a+1)^2 +b^2 ))=3  [(a−1)^2 +b^2 ]×[(a+1)^2 +b^2 ]=9  (a^2 −1)^2 +b^2 [(a−1)^2 +(a+1)^2 ]+b^4 =9  b^4 +2(a^2 +1)b^2 +(a^2 +2)(a^2 −4)=0  b^2 =−(a^2 +1)±(√((a^2 +1)^2 −(a^2 +2)(a^2 −4)))  b^2 =−(a^2 +1)±(√(4a^2 +9))  b^2 ≥0  −(a^2 +1)+(√(4a^2 +9))≥0  (√(4a^2 +9))≥a^2 +1  4a^2 +9≥a^4 +2a^2 +1  a^4 −2a^2 −8≤0  (a^2 +2)(a^2 −4)≤0  a^2 −4≤0  ⇒−2≤a≤2  ⇒b^2 =(√(4a^2 +9))−a^2 −1  ⇒b=±(√((√(4a^2 +9))−a^2 −1))  ⇒x=(a−(1/4))±i(√((√(4a^2 +9))−a^2 −1))  with −2≤a≤2

$${let}\:{x}+\frac{\mathrm{1}}{\mathrm{4}}={a}+{bi} \\ $$$$\mid{x}−\frac{\mathrm{3}}{\mathrm{4}}\mid×\mid{x}+\frac{\mathrm{5}}{\mathrm{4}}\mid=\mathrm{3} \\ $$$$\sqrt{\left({a}−\mathrm{1}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} }×\sqrt{\left({a}+\mathrm{1}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} }=\mathrm{3} \\ $$$$\left[\left({a}−\mathrm{1}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \right]×\left[\left({a}+\mathrm{1}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \right]=\mathrm{9} \\ $$$$\left({a}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \left[\left({a}−\mathrm{1}\right)^{\mathrm{2}} +\left({a}+\mathrm{1}\right)^{\mathrm{2}} \right]+{b}^{\mathrm{4}} =\mathrm{9} \\ $$$${b}^{\mathrm{4}} +\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{1}\right){b}^{\mathrm{2}} +\left({a}^{\mathrm{2}} +\mathrm{2}\right)\left({a}^{\mathrm{2}} −\mathrm{4}\right)=\mathrm{0} \\ $$$${b}^{\mathrm{2}} =−\left({a}^{\mathrm{2}} +\mathrm{1}\right)\pm\sqrt{\left({a}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\left({a}^{\mathrm{2}} +\mathrm{2}\right)\left({a}^{\mathrm{2}} −\mathrm{4}\right)} \\ $$$${b}^{\mathrm{2}} =−\left({a}^{\mathrm{2}} +\mathrm{1}\right)\pm\sqrt{\mathrm{4}{a}^{\mathrm{2}} +\mathrm{9}} \\ $$$${b}^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$−\left({a}^{\mathrm{2}} +\mathrm{1}\right)+\sqrt{\mathrm{4}{a}^{\mathrm{2}} +\mathrm{9}}\geqslant\mathrm{0} \\ $$$$\sqrt{\mathrm{4}{a}^{\mathrm{2}} +\mathrm{9}}\geqslant{a}^{\mathrm{2}} +\mathrm{1} \\ $$$$\mathrm{4}{a}^{\mathrm{2}} +\mathrm{9}\geqslant{a}^{\mathrm{4}} +\mathrm{2}{a}^{\mathrm{2}} +\mathrm{1} \\ $$$${a}^{\mathrm{4}} −\mathrm{2}{a}^{\mathrm{2}} −\mathrm{8}\leqslant\mathrm{0} \\ $$$$\left({a}^{\mathrm{2}} +\mathrm{2}\right)\left({a}^{\mathrm{2}} −\mathrm{4}\right)\leqslant\mathrm{0} \\ $$$${a}^{\mathrm{2}} −\mathrm{4}\leqslant\mathrm{0} \\ $$$$\Rightarrow−\mathrm{2}\leqslant{a}\leqslant\mathrm{2} \\ $$$$\Rightarrow{b}^{\mathrm{2}} =\sqrt{\mathrm{4}{a}^{\mathrm{2}} +\mathrm{9}}−{a}^{\mathrm{2}} −\mathrm{1} \\ $$$$\Rightarrow{b}=\pm\sqrt{\sqrt{\mathrm{4}{a}^{\mathrm{2}} +\mathrm{9}}−{a}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\Rightarrow{x}=\left({a}−\frac{\mathrm{1}}{\mathrm{4}}\right)\pm{i}\sqrt{\sqrt{\mathrm{4}{a}^{\mathrm{2}} +\mathrm{9}}−{a}^{\mathrm{2}} −\mathrm{1}} \\ $$$${with}\:−\mathrm{2}\leqslant{a}\leqslant\mathrm{2} \\ $$

Commented by MJS last updated on 09/Nov/18

thank you!

$$\mathrm{thank}\:\mathrm{you}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com