Question and Answers Forum

All Questions      Topic List

Set Theory Questions

Previous in All Question      Next in All Question      

Previous in Set Theory      Next in Set Theory      

Question Number 4733 by Yozzii last updated on 02/Mar/16

Commented by Yozzii last updated on 02/Mar/16

How can you show that   (∪S)×(∪T)⊉∪{X×Y ∣X∈S,Y∈T}?

$${How}\:{can}\:{you}\:{show}\:{that}\: \\ $$$$\left(\cup{S}\right)×\left(\cup{T}\right)\nsupseteq\cup\left\{{X}×{Y}\:\mid{X}\in{S},{Y}\in{T}\right\}? \\ $$

Commented by prakash jain last updated on 02/Mar/16

From the problem description second part  along with first part it looks like common  elements in elements of S and T create   extra element in RHS.   I am not yet able to identify an element in  RHS which is not an element in LHS.

$$\mathrm{From}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{description}\:\mathrm{second}\:\mathrm{part} \\ $$$$\mathrm{along}\:\mathrm{with}\:\mathrm{first}\:\mathrm{part}\:\mathrm{it}\:\mathrm{looks}\:\mathrm{like}\:\mathrm{common} \\ $$$$\mathrm{elements}\:\mathrm{in}\:\mathrm{elements}\:\mathrm{of}\:{S}\:\mathrm{and}\:{T}\:\mathrm{create}\: \\ $$$$\mathrm{extra}\:\mathrm{element}\:\mathrm{in}\:\mathrm{RHS}.\: \\ $$$$\mathrm{I}\:\mathrm{am}\:\mathrm{not}\:\mathrm{yet}\:\mathrm{able}\:\mathrm{to}\:\mathrm{identify}\:\mathrm{an}\:\mathrm{element}\:\mathrm{in} \\ $$$$\mathrm{RHS}\:\mathrm{which}\:\mathrm{is}\:\mathrm{not}\:\mathrm{an}\:\mathrm{element}\:\mathrm{in}\:\mathrm{LHS}. \\ $$

Commented by Yozzii last updated on 02/Mar/16

Some special counter−example  needs to be found I think.

$${Some}\:{special}\:{counter}−{example} \\ $$$${needs}\:{to}\:{be}\:{found}\:{I}\:{think}. \\ $$

Commented by prakash jain last updated on 02/Mar/16

To me they appear equal.  LHS=A  RHS=B  (x,y) ∈B ⇒x∈X for some X∈S,y∈Y for some Y∈T  ⇒x∈(∪S) and y∈(∪T)⇒(x,y)∈A  The question is asking that  ∃(x,y)∈B such that (x,y)∉A.

$$\mathrm{To}\:\mathrm{me}\:\mathrm{they}\:\mathrm{appear}\:\mathrm{equal}. \\ $$$$\mathrm{LHS}=\mathrm{A} \\ $$$$\mathrm{RHS}=\mathrm{B} \\ $$$$\left({x},{y}\right)\:\in\mathrm{B}\:\Rightarrow{x}\in{X}\:\mathrm{for}\:\mathrm{some}\:\mathrm{X}\in\mathrm{S},{y}\in\mathrm{Y}\:\mathrm{for}\:\mathrm{some}\:\mathrm{Y}\in\mathrm{T} \\ $$$$\Rightarrow{x}\in\left(\cup\mathrm{S}\right)\:\mathrm{and}\:{y}\in\left(\cup\mathrm{T}\right)\Rightarrow\left({x},{y}\right)\in\mathrm{A} \\ $$$$\mathrm{The}\:\mathrm{question}\:\mathrm{is}\:\mathrm{asking}\:\mathrm{that} \\ $$$$\exists\left({x},{y}\right)\in{B}\:\mathrm{such}\:\mathrm{that}\:\left({x},{y}\right)\notin\mathrm{A}. \\ $$

Commented by Yozzii last updated on 02/Mar/16

Exactly what I thought. I can′t  see how they can′t be equal generally.

$${Exactly}\:{what}\:{I}\:{thought}.\:{I}\:{can}'{t} \\ $$$${see}\:{how}\:{they}\:{can}'{t}\:{be}\:{equal}\:{generally}. \\ $$

Commented by prakash jain last updated on 04/Mar/16

Did you find a counter example?  123456, what is your opinion?

$$\mathrm{Did}\:\mathrm{you}\:\mathrm{find}\:\mathrm{a}\:\mathrm{counter}\:\mathrm{example}? \\ $$$$\mathrm{123456},\:\mathrm{what}\:\mathrm{is}\:\mathrm{your}\:\mathrm{opinion}? \\ $$

Commented by 123456 last updated on 04/Mar/16

what (∪A) mean?

$$\mathrm{what}\:\left(\cup\mathrm{A}\right)\:\mathrm{mean}? \\ $$

Commented by Yozzii last updated on 04/Mar/16

For the set A containing the sets X_i   (1≤i≤n)  ∪A is the union of all X_(i ) , or   ∪A=∪_(i=1) ^n X_i =X_1 ∪X_2 ∪X_3 ∪...∪X_(n−1) ∪X_n .

$${For}\:{the}\:{set}\:{A}\:{containing}\:{the}\:{sets}\:{X}_{{i}} \:\:\left(\mathrm{1}\leqslant{i}\leqslant{n}\right) \\ $$$$\cup{A}\:{is}\:{the}\:{union}\:{of}\:{all}\:{X}_{{i}\:} ,\:{or}\: \\ $$$$\cup{A}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\cup}}{X}_{{i}} ={X}_{\mathrm{1}} \cup{X}_{\mathrm{2}} \cup{X}_{\mathrm{3}} \cup...\cup{X}_{{n}−\mathrm{1}} \cup{X}_{{n}} . \\ $$

Commented by 123456 last updated on 04/Mar/16

so  (∪S)×(∪T)=(∪_(i=1) ^n S_i )×(∪_(i=1) ^m T_i )  ?

$$\mathrm{so} \\ $$$$\left(\cup{S}\right)×\left(\cup{T}\right)=\left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\cup}}{S}_{{i}} \right)×\left(\underset{{i}=\mathrm{1}} {\overset{{m}} {\cup}}{T}_{{i}} \right) \\ $$$$? \\ $$

Commented by Yozzii last updated on 04/Mar/16

∪S=∪_(i=1) ^n X_i   and ∪T=∪_(i=1) ^m Y_i   since the right had side has X∈S  and Y∈T. X and Y are just used  to indicate that some member of S and  T  are crossed such that X×Y .

$$\cup{S}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\cup}}{X}_{{i}} \:\:{and}\:\cup{T}=\underset{{i}=\mathrm{1}} {\overset{{m}} {\cup}}{Y}_{{i}} \\ $$$${since}\:{the}\:{right}\:{had}\:{side}\:{has}\:{X}\in{S} \\ $$$${and}\:{Y}\in{T}.\:{X}\:{and}\:{Y}\:{are}\:{just}\:{used} \\ $$$${to}\:{indicate}\:{that}\:{some}\:{member}\:{of}\:{S}\:{and} \\ $$$${T}\:\:{are}\:{crossed}\:{such}\:{that}\:{X}×{Y}\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com