Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 47422 by ajfour last updated on 09/Nov/18

Commented by ajfour last updated on 09/Nov/18

A vertical ellipsoid shell of  frictionless surface holds a  flexible rope ring of mass m,  radius R. Find the tension in   the rope.

$${A}\:{vertical}\:{ellipsoid}\:{shell}\:{of} \\ $$$${frictionless}\:{surface}\:{holds}\:{a} \\ $$$${flexible}\:{rope}\:{ring}\:{of}\:{mass}\:{m}, \\ $$$${radius}\:{R}.\:{Find}\:{the}\:{tension}\:{in}\: \\ $$$${the}\:{rope}. \\ $$

Answered by MrW3 last updated on 09/Nov/18

eqn. of ellipse:  (x^2 /b^2 )+(y^2 /a^2 )=1  (x/b^2 )+(y/a^z )y′=0  at x=R:  (R/b^2 )+(k/a^2 )tan θ=0  (R^2 /b^2 )+(k^2 /a^2 )=1  ⇒(R^2 /b^2 )+(1/a^2 )(−((a^2 R)/(b^2 tan θ)))^2 =1  a^2 R^2 ×(1/(tan^2  θ))=b^2 (b^2 −R^2 )  a^2 R^2 ×(1/(tan^2  θ))=b^2 (b^2 −R^2 )  tan^2  θ=((a^2 R^2 )/(b^2 (b^2 −R^2 )))  ⇒tan θ=(a/b)×((R/b)/(√(1−(R^2 /b^2 ))))  (T/R)=ρg tan θ=((mg)/(2πR))×(a/b)×((R/b)/(√(1−(R^2 /b^2 ))))  ⇒T=((mg)/(2π))×(a/b)×((R/b)/(√(1−(R^2 /b^2 ))))

$${eqn}.\:{of}\:{ellipse}: \\ $$$$\frac{{x}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}}{{b}^{\mathrm{2}} }+\frac{{y}}{{a}^{{z}} }{y}'=\mathrm{0} \\ $$$${at}\:{x}={R}: \\ $$$$\frac{{R}}{{b}^{\mathrm{2}} }+\frac{{k}}{{a}^{\mathrm{2}} }\mathrm{tan}\:\theta=\mathrm{0} \\ $$$$\frac{{R}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\frac{{k}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow\frac{{R}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\left(−\frac{{a}^{\mathrm{2}} {R}}{{b}^{\mathrm{2}} \mathrm{tan}\:\theta}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${a}^{\mathrm{2}} {R}^{\mathrm{2}} ×\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\theta}={b}^{\mathrm{2}} \left({b}^{\mathrm{2}} −{R}^{\mathrm{2}} \right) \\ $$$${a}^{\mathrm{2}} {R}^{\mathrm{2}} ×\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\theta}={b}^{\mathrm{2}} \left({b}^{\mathrm{2}} −{R}^{\mathrm{2}} \right) \\ $$$$\mathrm{tan}^{\mathrm{2}} \:\theta=\frac{{a}^{\mathrm{2}} {R}^{\mathrm{2}} }{{b}^{\mathrm{2}} \left({b}^{\mathrm{2}} −{R}^{\mathrm{2}} \right)} \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\frac{{a}}{{b}}×\frac{\frac{{R}}{{b}}}{\sqrt{\mathrm{1}−\frac{{R}^{\mathrm{2}} }{{b}^{\mathrm{2}} }}} \\ $$$$\frac{{T}}{{R}}=\rho{g}\:\mathrm{tan}\:\theta=\frac{{mg}}{\mathrm{2}\pi{R}}×\frac{{a}}{{b}}×\frac{\frac{{R}}{{b}}}{\sqrt{\mathrm{1}−\frac{{R}^{\mathrm{2}} }{{b}^{\mathrm{2}} }}} \\ $$$$\Rightarrow{T}=\frac{{mg}}{\mathrm{2}\pi}×\frac{{a}}{{b}}×\frac{\frac{{R}}{{b}}}{\sqrt{\mathrm{1}−\frac{{R}^{\mathrm{2}} }{{b}^{\mathrm{2}} }}} \\ $$

Commented by ajfour last updated on 09/Nov/18

Thank you Sir.

$${Thank}\:{you}\:{Sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com