Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 47425 by ajfour last updated on 09/Nov/18

Commented by ajfour last updated on 09/Nov/18

Find b if a=1 and △ABC has  minimum area.

$${Find}\:{b}\:{if}\:{a}=\mathrm{1}\:{and}\:\bigtriangleup{ABC}\:{has} \\ $$$${minimum}\:{area}. \\ $$

Answered by mr W last updated on 09/Nov/18

eqn. of ellipse:  (x^2 /a^2 )+(y^2 /b^2 )=1  let tan α=(b/a)  eqn. of BA:  y=(b/a)x+b  eqn. of BC:  y=−(a/b)x  A(a,y_A ),C(a,y_C )  y_A =(b/a)a+b=2b  y_C =−(a/b)a=−(a^2 /b)  AC=y_A −y_C =2b+(a^2 /b)=((a^2 +2b^2 )/b)  S_(ABC) =((AC^2 sin α cos α)/2)=(((a^2 +2b^2 )^2 ab)/(2b^2 (a^2 +b^2 )))  with λ=(b/a)  S_(ABC) =(((1+2λ^2 )^2 a^2 )/(2λ(1+λ^2 )))  (dS/dλ)=(a^2 /2)[((8(1+2λ^2 ))/((1+λ^2 )))−(((1+2λ^2 )^2 (1+3λ^2 ))/(λ^2 (1+λ^2 )^2 ))]=0  8λ^2 (1+λ^2 )−(1+2λ^2 )(1+3λ^2 )=0  2λ^4 +3λ^2 −1=0  λ^2 =(((√(17))−3)/4)  ⇒λ=(b/a)=((√((√(17))−3))/2)≈0.5299  ⇒b≈0.5299

$${eqn}.\:{of}\:{ellipse}: \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${let}\:\mathrm{tan}\:\alpha=\frac{{b}}{{a}} \\ $$$${eqn}.\:{of}\:{BA}: \\ $$$${y}=\frac{{b}}{{a}}{x}+{b} \\ $$$${eqn}.\:{of}\:{BC}: \\ $$$${y}=−\frac{{a}}{{b}}{x} \\ $$$${A}\left({a},{y}_{{A}} \right),{C}\left({a},{y}_{{C}} \right) \\ $$$${y}_{{A}} =\frac{{b}}{{a}}{a}+{b}=\mathrm{2}{b} \\ $$$${y}_{{C}} =−\frac{{a}}{{b}}{a}=−\frac{{a}^{\mathrm{2}} }{{b}} \\ $$$${AC}={y}_{{A}} −{y}_{{C}} =\mathrm{2}{b}+\frac{{a}^{\mathrm{2}} }{{b}}=\frac{{a}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} }{{b}} \\ $$$${S}_{{ABC}} =\frac{{AC}^{\mathrm{2}} \mathrm{sin}\:\alpha\:\mathrm{cos}\:\alpha}{\mathrm{2}}=\frac{\left({a}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} \right)^{\mathrm{2}} {ab}}{\mathrm{2}{b}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)} \\ $$$${with}\:\lambda=\frac{{b}}{{a}} \\ $$$${S}_{{ABC}} =\frac{\left(\mathrm{1}+\mathrm{2}\lambda^{\mathrm{2}} \right)^{\mathrm{2}} {a}^{\mathrm{2}} }{\mathrm{2}\lambda\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)} \\ $$$$\frac{{dS}}{{d}\lambda}=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left[\frac{\mathrm{8}\left(\mathrm{1}+\mathrm{2}\lambda^{\mathrm{2}} \right)}{\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)}−\frac{\left(\mathrm{1}+\mathrm{2}\lambda^{\mathrm{2}} \right)^{\mathrm{2}} \left(\mathrm{1}+\mathrm{3}\lambda^{\mathrm{2}} \right)}{\lambda^{\mathrm{2}} \left(\mathrm{1}+\lambda^{\mathrm{2}} \right)^{\mathrm{2}} }\right]=\mathrm{0} \\ $$$$\mathrm{8}\lambda^{\mathrm{2}} \left(\mathrm{1}+\lambda^{\mathrm{2}} \right)−\left(\mathrm{1}+\mathrm{2}\lambda^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{3}\lambda^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\mathrm{2}\lambda^{\mathrm{4}} +\mathrm{3}\lambda^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$$\lambda^{\mathrm{2}} =\frac{\sqrt{\mathrm{17}}−\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow\lambda=\frac{{b}}{{a}}=\frac{\sqrt{\sqrt{\mathrm{17}}−\mathrm{3}}}{\mathrm{2}}\approx\mathrm{0}.\mathrm{5299} \\ $$$$\Rightarrow{b}\approx\mathrm{0}.\mathrm{5299} \\ $$

Commented by ajfour last updated on 10/Nov/18

Very Nice, Sir!

$${Very}\:{Nice},\:{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com