Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 47513 by ajfour last updated on 11/Nov/18

Commented by ajfour last updated on 11/Nov/18

Find coordinates of all points  that have same ⊥ distance from  from the three lines.  For each such point this ⊥  distance may differ.

$${Find}\:{coordinates}\:{of}\:{all}\:{points} \\ $$$${that}\:{have}\:{same}\:\bot\:{distance}\:{from} \\ $$$${from}\:{the}\:{three}\:{lines}. \\ $$$${For}\:{each}\:{such}\:{point}\:{this}\:\bot \\ $$$${distance}\:{may}\:{differ}. \\ $$

Answered by mr W last updated on 11/Nov/18

A(c,d)  B(0,0)  C(a,b)  BC=u=(√(a^2 +b^2 ))  CA=v=(√((a−c)^2 +(b−d)^2 ))  AB=w=(√(c^2 +d^2 ))  s=(u+v+w)/2    eqn. of AB:  (y/x)=(d/c)  ⇒dx−cy=0  eqn. of BC:  (y/x)=(b/a)  ⇒bx−ay=0    Incircle with incenter I:  r_I =(Δ/s)=(√(((s−u)(s−v)(s−w))/s))  d_⊥  from I to AB=r_I :  ((dx_I −cy_I )/(√(c^2 +d^2 )))=sign(ad−bc)r_I   ⇒dx_I −cy_I =sign(ad−bc)r_I (√(c^2 +d^2 ))  d_⊥  from I to BC=r_I :  ((bx_I −ay_I )/(√(a^2 +b^2 )))=sign(bc−ad)r_I   ⇒bx_I −ay_I =−sign(ad−bc)r_I (√(a^2 +b^2 ))  (ad−bc)x_I =sign(ad−bc)r_I (a(√(c^2 +d^2 ))+c(√(a^2 +b^2 )))  ⇒x_I =(((a(√(c^2 +d^2 ))+c(√(a^2 +b^2 )))r_I )/(∣ad−bc∣))  (ad−bc)y_I =sign(ad−bc)r_I (b(√(c^2 +d^2 ))+d(√(a^2 +b^2 )))  ⇒y_I =(((b(√(c^2 +d^2 ))+d(√(a^2 +b^2 )))r_I )/(∣ad−bc∣))    Excircles with excenters P,Q,R:  r_P =(√((s(a−v)(s−w))/(s−u)))  r_Q =(√((s(a−u)(s−w))/(s−v)))  r_R =(√((s(a−u)(s−v))/(s−w)))    similarly to incircle we get  ⇒x_P =(((a(√(c^2 +d^2 ))−c(√(a^2 +b^2 )))r_P )/(∣ad−bc∣))  ⇒y_P =(((b(√(c^2 +d^2 ))−d(√(a^2 +b^2 )))r_P )/(∣ad−bc∣))    ⇒x_Q =(((a(√(c^2 +d^2 ))+c(√(a^2 +b^2 )))r_Q )/(∣ad−bc∣))  ⇒y_Q =(((b(√(c^2 +d^2 ))+d(√(a^2 +b^2 )))r_Q )/(∣ad−bc∣))    ⇒x_R =(((−a(√(c^2 +d^2 ))+c(√(a^2 +b^2 )))r_R )/(∣ad−bc∣))  ⇒y_R =(((−b(√(c^2 +d^2 ))+d(√(a^2 +b^2 )))r_R )/(∣ad−bc∣))

$${A}\left({c},{d}\right) \\ $$$${B}\left(\mathrm{0},\mathrm{0}\right) \\ $$$${C}\left({a},{b}\right) \\ $$$${BC}={u}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${CA}={v}=\sqrt{\left({a}−{c}\right)^{\mathrm{2}} +\left({b}−{d}\right)^{\mathrm{2}} } \\ $$$${AB}={w}=\sqrt{{c}^{\mathrm{2}} +{d}^{\mathrm{2}} } \\ $$$${s}=\left({u}+{v}+{w}\right)/\mathrm{2} \\ $$$$ \\ $$$${eqn}.\:{of}\:{AB}: \\ $$$$\frac{{y}}{{x}}=\frac{{d}}{{c}} \\ $$$$\Rightarrow{dx}−{cy}=\mathrm{0} \\ $$$${eqn}.\:{of}\:{BC}: \\ $$$$\frac{{y}}{{x}}=\frac{{b}}{{a}} \\ $$$$\Rightarrow{bx}−{ay}=\mathrm{0} \\ $$$$ \\ $$$${Incircle}\:{with}\:{incenter}\:{I}: \\ $$$${r}_{{I}} =\frac{\Delta}{{s}}=\sqrt{\frac{\left({s}−{u}\right)\left({s}−{v}\right)\left({s}−{w}\right)}{{s}}} \\ $$$${d}_{\bot} \:{from}\:{I}\:{to}\:{AB}={r}_{{I}} : \\ $$$$\frac{{dx}_{{I}} −{cy}_{{I}} }{\sqrt{{c}^{\mathrm{2}} +{d}^{\mathrm{2}} }}={sign}\left({ad}−{bc}\right){r}_{{I}} \\ $$$$\Rightarrow{dx}_{{I}} −{cy}_{{I}} ={sign}\left({ad}−{bc}\right){r}_{{I}} \sqrt{{c}^{\mathrm{2}} +{d}^{\mathrm{2}} } \\ $$$${d}_{\bot} \:{from}\:{I}\:{to}\:{BC}={r}_{{I}} : \\ $$$$\frac{{bx}_{{I}} −{ay}_{{I}} }{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}={sign}\left({bc}−{ad}\right){r}_{{I}} \\ $$$$\Rightarrow{bx}_{{I}} −{ay}_{{I}} =−{sign}\left({ad}−{bc}\right){r}_{{I}} \sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\left({ad}−{bc}\right){x}_{{I}} ={sign}\left({ad}−{bc}\right){r}_{{I}} \left({a}\sqrt{{c}^{\mathrm{2}} +{d}^{\mathrm{2}} }+{c}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right) \\ $$$$\Rightarrow{x}_{{I}} =\frac{\left({a}\sqrt{{c}^{\mathrm{2}} +{d}^{\mathrm{2}} }+{c}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right){r}_{{I}} }{\mid{ad}−{bc}\mid} \\ $$$$\left({ad}−{bc}\right){y}_{{I}} ={sign}\left({ad}−{bc}\right){r}_{{I}} \left({b}\sqrt{{c}^{\mathrm{2}} +{d}^{\mathrm{2}} }+{d}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right) \\ $$$$\Rightarrow{y}_{{I}} =\frac{\left({b}\sqrt{{c}^{\mathrm{2}} +{d}^{\mathrm{2}} }+{d}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right){r}_{{I}} }{\mid{ad}−{bc}\mid} \\ $$$$ \\ $$$${Excircles}\:{with}\:{excenters}\:{P},{Q},{R}: \\ $$$${r}_{{P}} =\sqrt{\frac{{s}\left({a}−{v}\right)\left({s}−{w}\right)}{{s}−{u}}} \\ $$$${r}_{{Q}} =\sqrt{\frac{{s}\left({a}−{u}\right)\left({s}−{w}\right)}{{s}−{v}}} \\ $$$${r}_{{R}} =\sqrt{\frac{{s}\left({a}−{u}\right)\left({s}−{v}\right)}{{s}−{w}}} \\ $$$$ \\ $$$${similarly}\:{to}\:{incircle}\:{we}\:{get} \\ $$$$\Rightarrow{x}_{{P}} =\frac{\left({a}\sqrt{{c}^{\mathrm{2}} +{d}^{\mathrm{2}} }−{c}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right){r}_{{P}} }{\mid{ad}−{bc}\mid} \\ $$$$\Rightarrow{y}_{{P}} =\frac{\left({b}\sqrt{{c}^{\mathrm{2}} +{d}^{\mathrm{2}} }−{d}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right){r}_{{P}} }{\mid{ad}−{bc}\mid} \\ $$$$ \\ $$$$\Rightarrow{x}_{{Q}} =\frac{\left({a}\sqrt{{c}^{\mathrm{2}} +{d}^{\mathrm{2}} }+{c}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right){r}_{{Q}} }{\mid{ad}−{bc}\mid} \\ $$$$\Rightarrow{y}_{{Q}} =\frac{\left({b}\sqrt{{c}^{\mathrm{2}} +{d}^{\mathrm{2}} }+{d}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right){r}_{{Q}} }{\mid{ad}−{bc}\mid} \\ $$$$ \\ $$$$\Rightarrow{x}_{{R}} =\frac{\left(−{a}\sqrt{{c}^{\mathrm{2}} +{d}^{\mathrm{2}} }+{c}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right){r}_{{R}} }{\mid{ad}−{bc}\mid} \\ $$$$\Rightarrow{y}_{{R}} =\frac{\left(−{b}\sqrt{{c}^{\mathrm{2}} +{d}^{\mathrm{2}} }+{d}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right){r}_{{R}} }{\mid{ad}−{bc}\mid} \\ $$

Commented by ajfour last updated on 11/Nov/18

Excellent Sir.  beautiful results.

$${Excellent}\:{Sir}. \\ $$$${beautiful}\:{results}. \\ $$

Commented by peter frank last updated on 11/Nov/18

what app do you use sir?

$$\mathrm{what}\:\mathrm{app}\:\mathrm{do}\:\mathrm{you}\:\mathrm{use}\:\mathrm{sir}? \\ $$

Commented by mr W last updated on 11/Nov/18

Commented by mr W last updated on 11/Nov/18

to draw the graph I used the app Grapher.

$${to}\:{draw}\:{the}\:{graph}\:{I}\:{used}\:{the}\:{app}\:{Grapher}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com