All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 47559 by ajfour last updated on 11/Nov/18
Commented by ajfour last updated on 11/Nov/18
Q.47519(Solutionattempted)
Answered by ajfour last updated on 11/Nov/18
Area△ABC=12(AB)(CP)AB=xA2+yB2Let∠OAB=θ;CP=lP(x1,y1),C(xC,yC)Eq.oftangenttoEllipseatPxx1a2+yy1b2=1tanθ=b2x1a2y1⇒x1y1=a2sinθb2cosθ..(i)⇒xA=a2x1;yB=b2y1xC=x1−lsinθyC=y1−lcosθAndsinceCliesonellipse(x1−lsinθ)2a2+(y1−lcosθ)2b2=1⇒l2sin2θa2+l2cos2θb2+(x12a2+y12b2)−2l(x1sinθa2+y1cosθb2)=1but(x12a2+y12b2)=1,So⇒l=2(x1sinθa2+y1cosθb2)sin2θa2+cos2θb2△=l2xA2+yA2=(x1sinθa2+y1cosθb2)a4x12+b4y12sin2θa2+cos2θb2⇒△=(x1sinθy1a2+cosθb2)y12a4x12+b4sin2θa2+cos2θb2using(i):x1y1=a2sinθb2cosθ△=(sin2θb2cosθ+cosθb2)b4cos2θsin2θ+b4sin2θa2+cos2θb2△=1b2cosθ×b2sinθsin2θa2+cos2θb2⇒1△=sinθcosθ(sin2θa2+cos2θb2)lettanθ=m⇒1△=m(m2a2+1b2)(1+m2)2d(1/△)dθ=d(1/△)dm×dmdθd(1/△)dθ=0(forminimum△)⇒d(1/△)dm=(1+m2)2(3m2a2+1b2)−4m2(1+m2)(m2a2+1b2)=0⇒(1+m2)(3m2a2+1b2)=4m2(m2a2+1b2)3m2a2+1b2+3m4a2+m2b2=4m4a2+4m2b2⇒m4+3m2(a2b2−1)−a2b2=0m2=94(a2b2−1)2+a2b2−32(a2b2−1)△min=a2(1+m2)2m(m2+a2b2).(Asaspecialcase)Ifa=b=R,thenm=1△min=2R2.
Commented by mr W last updated on 11/Nov/18
greatsolutionsir!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com