Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 47559 by ajfour last updated on 11/Nov/18

Commented by ajfour last updated on 11/Nov/18

Q.47519  (Solution attempted)

Q.47519(Solutionattempted)

Answered by ajfour last updated on 11/Nov/18

Area △ABC = (1/2)(AB)(CP)  AB = (√(x_A ^2 +y_B ^2 ))  Let   ∠OAB=θ ;  CP = l    P (x_1 ,y_1 ),  C(x_C  ,y_C )  Eq. of tangent to Ellipse at P            ((xx_1 )/a^2 )+((yy_1 )/b^2 ) = 1  tan θ = ((b^2 x_1 )/(a^2 y_1 ))   ⇒  (x_1 /y_1 ) = ((a^2 sin θ)/(b^2 cos θ))  ..(i)  ⇒  x_A  = (a^2 /x_1 )  ;  y_B  = (b^2 /y_1 )      x_C  = x_1 −lsin θ       y_C = y_1 −lcos θ  And since C lies on ellipse      (((x_1 −lsin θ)^2 )/a^2 )+(((y_1 −lcos θ)^2 )/b^2 ) = 1    ⇒  ((l^2 sin^2 θ)/a^2 )+((l^2 cos^2 θ)/b^2 )+((x_1 ^2 /a^2 )+(y_1 ^2 /b^2 ))       −2l(((x_1 sin θ)/a^2 )+((y_1 cos θ)/b^2 )) = 1  but  ((x_1 ^2 /a^2 )+(y_1 ^2 /b^2 )) = 1, So  ⇒  l= ((2(((x_1 sin θ)/a^2 )+((y_1 cos θ)/b^2 )))/(((sin^2  θ)/a^2 )+((cos^2 θ)/b^2 )))      △ = (l/2)(√(x_A ^2 +y_A ^2 ))    = (((((x_1 sin θ)/a^2 )+((y_1 cos θ)/b^2 ))(√((a^4 /x_1 ^2 )+(b^4 /y_1 ^2 ))))/(((sin^2  θ)/a^2 )+((cos^2 θ)/b^2 )))   ⇒ △=(((((x_1 sin θ)/(y_1 a^2 ))+((cos θ)/b^2 ))(√(((y_1 ^2 a^4 )/x_1 ^2 )+b^4 )))/(((sin^2  θ)/a^2 )+((cos^2 θ)/b^2 )))  using (i) :       (x_1 /y_1 ) = ((a^2 sin θ)/(b^2 cos θ))   △ = (((((sin^2 θ)/(b^2 cos θ))+((cos θ)/b^2 ))(√(((b^4 cos^2 θ)/(sin^2 θ))+b^4 )))/(((sin^2 θ)/a^2 )+((cos^2 θ)/b^2 )))    △  = (((1/(b^2 cos θ))×(b^2 /(sin θ)))/(((sin^2 θ)/a^2 )+((cos^2 θ)/b^2 )))   ⇒ (1/△) = sin θcos θ(((sin^2 θ)/a^2 )+((cos^2 θ)/b^2 ))  let     tan θ = m  ⇒    (1/△) = ((m((m^2 /a^2 )+(1/b^2 )))/((1+m^2 )^2 ))     ((d(1/△))/dθ) = ((d(1/△))/dm)×(dm/dθ)  ((d(1/△))/dθ) = 0  (for minimum △)  ⇒   ((d(1/△))/dm) = (1+m^2 )^2 (((3m^2 )/a^2 )+(1/b^2 ))         − 4m^2 (1+m^2 )((m^2 /a^2 )+(1/b^2 )) = 0  ⇒(1+m^2 )(((3m^2 )/a^2 )+(1/b^2 ))=4m^2 ((m^2 /a^2 )+(1/b^2 ))  ((3m^2 )/a^2 )+(1/b^2 )+((3m^4 )/a^2 )+(m^2 /b^2 ) = ((4m^4 )/a^2 )+((4m^2 )/b^2 )  ⇒  m^4 +3m^2 ((a^2 /b^2 )−1)−(a^2 /b^2 ) = 0  m^2  = (√((9/4)((a^2 /b^2 )−1)^2 +(a^2 /b^2 ))) −(3/2)((a^2 /b^2 )−1)   △_(min)  = ((a^2 (1+m^2 )^2 )/(m(m^2 +(a^2 /b^2 ))))  .  (As a special case)  If  a= b =R ,  then   m= 1             △_(min) = 2R^2  .

AreaABC=12(AB)(CP)AB=xA2+yB2LetOAB=θ;CP=lP(x1,y1),C(xC,yC)Eq.oftangenttoEllipseatPxx1a2+yy1b2=1tanθ=b2x1a2y1x1y1=a2sinθb2cosθ..(i)xA=a2x1;yB=b2y1xC=x1lsinθyC=y1lcosθAndsinceCliesonellipse(x1lsinθ)2a2+(y1lcosθ)2b2=1l2sin2θa2+l2cos2θb2+(x12a2+y12b2)2l(x1sinθa2+y1cosθb2)=1but(x12a2+y12b2)=1,Sol=2(x1sinθa2+y1cosθb2)sin2θa2+cos2θb2=l2xA2+yA2=(x1sinθa2+y1cosθb2)a4x12+b4y12sin2θa2+cos2θb2=(x1sinθy1a2+cosθb2)y12a4x12+b4sin2θa2+cos2θb2using(i):x1y1=a2sinθb2cosθ=(sin2θb2cosθ+cosθb2)b4cos2θsin2θ+b4sin2θa2+cos2θb2=1b2cosθ×b2sinθsin2θa2+cos2θb21=sinθcosθ(sin2θa2+cos2θb2)lettanθ=m1=m(m2a2+1b2)(1+m2)2d(1/)dθ=d(1/)dm×dmdθd(1/)dθ=0(forminimum)d(1/)dm=(1+m2)2(3m2a2+1b2)4m2(1+m2)(m2a2+1b2)=0(1+m2)(3m2a2+1b2)=4m2(m2a2+1b2)3m2a2+1b2+3m4a2+m2b2=4m4a2+4m2b2m4+3m2(a2b21)a2b2=0m2=94(a2b21)2+a2b232(a2b21)min=a2(1+m2)2m(m2+a2b2).(Asaspecialcase)Ifa=b=R,thenm=1min=2R2.

Commented by mr W last updated on 11/Nov/18

great solution sir!

greatsolutionsir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com