Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 4758 by madscientist last updated on 05/Mar/16

∫_(−∞) ^∞ e^(−x^(2 ) )  dx = (√(π ))  is this true, if so how?

$$\int_{−\infty} ^{\infty} {e}^{−{x}^{\mathrm{2}\:} } \:{dx}\:=\:\sqrt{\pi\:} \\ $$$${is}\:{this}\:{true},\:{if}\:{so}\:{how}? \\ $$

Answered by Yozzii last updated on 05/Mar/16

Let f(x)=e^(−x^2 )  (x∈R). Since f(−x)=e^(−(−x)^2 ) =e^(−x^2 ) =f(x)  then f(x) is an even function. In general,  for g(u) being an even function, ∫_(−a) ^a g(u)du=2∫_0 ^a g(u)du  if the integral exists wholly on u∈[−a,a].  Now let I(a)=∫_(−a) ^a f(x)dx. Then, I(a)=2∫_0 ^a f(x)dx  since f(x) is even. Let us now determine  l=lim_(a→∞) I(a)=lim_(a→∞) 2∫_0 ^a f(x)dx.⇒l=2∫_0 ^∞ e^(−x^2 ) dx.  Substitute u=x^2  where x≥0.⇒x=(√u).  Also, du=2xdx=2(√u)dx⇒(1/2)u^(−1/2) du=dx.  At x=0,u=0^2 =0 and as x→∞,x^2 →∞  ⇒u→∞. l hence becomes   l=2∫_0 ^∞ 0.5u^(−1/2) e^(−u) du=∫_0 ^∞ u^(−1/2) e^(−u) du.  The gamma function Γ is given by the  form Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt (x>0). So truly  l=Γ(1/2). From the equation for 0<x<1  Γ(x)Γ(1−x)=(π/(sinπx)), let x=1/2.  ⇒Γ^2 (0.5)=(π/(sin0.5π))=π⇒Γ(0.5)=±(√π).  Since f(x)>0 for all x≥0, the integral  ought to be non−negative. Hence, Γ(0.5)=(√π)  only.⇒ l=(√π). But l is equivalent to the  form ∫_(−∞) ^∞ e^(−x^2 ) dx. So, ∫_(−∞) ^∞ e^(−x^2 ) dx=(√π).   The mathematical statement is true.

$${Let}\:{f}\left({x}\right)={e}^{−{x}^{\mathrm{2}} } \:\left({x}\in\mathbb{R}\right).\:{Since}\:{f}\left(−{x}\right)={e}^{−\left(−{x}\right)^{\mathrm{2}} } ={e}^{−{x}^{\mathrm{2}} } ={f}\left({x}\right) \\ $$$${then}\:{f}\left({x}\right)\:{is}\:{an}\:{even}\:{function}.\:{In}\:{general}, \\ $$$${for}\:{g}\left({u}\right)\:{being}\:{an}\:{even}\:{function},\:\int_{−{a}} ^{{a}} {g}\left({u}\right){du}=\mathrm{2}\int_{\mathrm{0}} ^{{a}} {g}\left({u}\right){du} \\ $$$${if}\:{the}\:{integral}\:{exists}\:{wholly}\:{on}\:{u}\in\left[−{a},{a}\right]. \\ $$$${Now}\:{let}\:{I}\left({a}\right)=\int_{−{a}} ^{{a}} {f}\left({x}\right){dx}.\:{Then},\:{I}\left({a}\right)=\mathrm{2}\int_{\mathrm{0}} ^{{a}} {f}\left({x}\right){dx} \\ $$$${since}\:{f}\left({x}\right)\:{is}\:{even}.\:{Let}\:{us}\:{now}\:{determine} \\ $$$${l}=\underset{{a}\rightarrow\infty} {\mathrm{lim}}{I}\left({a}\right)=\underset{{a}\rightarrow\infty} {\mathrm{lim}2}\int_{\mathrm{0}} ^{{a}} {f}\left({x}\right){dx}.\Rightarrow{l}=\mathrm{2}\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx}. \\ $$$${Substitute}\:{u}={x}^{\mathrm{2}} \:{where}\:{x}\geqslant\mathrm{0}.\Rightarrow{x}=\sqrt{{u}}. \\ $$$${Also},\:{du}=\mathrm{2}{xdx}=\mathrm{2}\sqrt{{u}}{dx}\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}{u}^{−\mathrm{1}/\mathrm{2}} {du}={dx}. \\ $$$${At}\:{x}=\mathrm{0},{u}=\mathrm{0}^{\mathrm{2}} =\mathrm{0}\:{and}\:{as}\:{x}\rightarrow\infty,{x}^{\mathrm{2}} \rightarrow\infty \\ $$$$\Rightarrow{u}\rightarrow\infty.\:{l}\:{hence}\:{becomes}\: \\ $$$${l}=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \mathrm{0}.\mathrm{5}{u}^{−\mathrm{1}/\mathrm{2}} {e}^{−{u}} {du}=\int_{\mathrm{0}} ^{\infty} {u}^{−\mathrm{1}/\mathrm{2}} {e}^{−{u}} {du}. \\ $$$${The}\:{gamma}\:{function}\:\Gamma\:{is}\:{given}\:{by}\:{the} \\ $$$${form}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} {e}^{−{t}} {dt}\:\left({x}>\mathrm{0}\right).\:{So}\:{truly} \\ $$$${l}=\Gamma\left(\mathrm{1}/\mathrm{2}\right).\:{From}\:{the}\:{equation}\:{for}\:\mathrm{0}<{x}<\mathrm{1} \\ $$$$\Gamma\left({x}\right)\Gamma\left(\mathrm{1}−{x}\right)=\frac{\pi}{{sin}\pi{x}},\:{let}\:{x}=\mathrm{1}/\mathrm{2}. \\ $$$$\Rightarrow\Gamma^{\mathrm{2}} \left(\mathrm{0}.\mathrm{5}\right)=\frac{\pi}{{sin}\mathrm{0}.\mathrm{5}\pi}=\pi\Rightarrow\Gamma\left(\mathrm{0}.\mathrm{5}\right)=\pm\sqrt{\pi}. \\ $$$${Since}\:{f}\left({x}\right)>\mathrm{0}\:{for}\:{all}\:{x}\geqslant\mathrm{0},\:{the}\:{integral} \\ $$$${ought}\:{to}\:{be}\:{non}−{negative}.\:{Hence},\:\Gamma\left(\mathrm{0}.\mathrm{5}\right)=\sqrt{\pi} \\ $$$${only}.\Rightarrow\:{l}=\sqrt{\pi}.\:{But}\:{l}\:{is}\:{equivalent}\:{to}\:{the} \\ $$$${form}\:\int_{−\infty} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx}.\:{So},\:\int_{−\infty} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx}=\sqrt{\pi}.\: \\ $$$${The}\:{mathematical}\:{statement}\:{is}\:{true}. \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com