Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 47624 by Umar last updated on 12/Nov/18

Solve the d.e using method of variation  of parameter.     (d^2 y/dx^2 )+3(dy/dx)+2y=sin(e^x )

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{d}.\mathrm{e}\:\mathrm{using}\:\mathrm{method}\:\mathrm{of}\:\mathrm{variation} \\ $$$$\mathrm{of}\:\mathrm{parameter}. \\ $$$$ \\ $$$$\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }+\mathrm{3}\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{2y}=\mathrm{sin}\left(\mathrm{e}^{\mathrm{x}} \right) \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 12/Nov/18

let  t=e^x   t=e^x   (dt/dx)=e^x =t    (dy/dx)=(dy/dt)×(dt/dx)=t(dy/dt)  (d/dx)((dy/dx))=(d/dt)(t(dy/dt))×(dt/dx)    =t×{t(d^2 y/dt^2 )+(dy/dt)}=t^2 (d^2 y/dt^2 )+t(dy/dt)  now  (d^2 y/dx^2 )+3(dy/dx)+2y=sin(e^x )  t^2 (d^2 y/dt^2 )+t(dy/dt)+3t(dy/dt)+2y=sin(t)  t^2 (d^2 y/dt^2 )+4t(dy/dt)+2y=sint  now  [θ(θ−1)+4θ+2]y=sint    θ=(d/dt)  for  C.F  θ^2 −θ+4θ+2=0  (θ+1)(θ+2)=0  θ=−1,−2  so C.F=C_1 e^(−t) +C_2 e^(−2t) →C_1 e^(−e^x ) +C_2 e^(−2e^x )   P.I  y=(1/(θ^2 +3θ+2))×sint  =((θ^2 +2−3θ)/((θ^2 +2+3θ)(θ^2 +2−3θ)))×sint  =((θ^2 +2−3θ)/((θ^2 +2)^2 −9θ^2 ))sint  =(1/((−1^2 +2)^2 −9(−1^2 )))×{−sint+2sint−cost}  =(1/(1+9))×{sint−cost}  =(1/(10))×{sin(e^x )−cos(e^x )}  so complete solution is  C_1  e^(−e^x ) +C_2 e^(−2e^x ) +(1/(10)){sin(e^x )−cos(e^x )}  pls check...

$${let} \\ $$$${t}={e}^{{x}} \\ $$$${t}={e}^{{x}} \\ $$$$\frac{{dt}}{{dx}}={e}^{{x}} ={t} \\ $$$$ \\ $$$$\frac{{dy}}{{dx}}=\frac{{dy}}{{dt}}×\frac{{dt}}{{dx}}={t}\frac{{dy}}{{dt}} \\ $$$$\frac{{d}}{{dx}}\left(\frac{{dy}}{{dx}}\right)=\frac{{d}}{{dt}}\left({t}\frac{{dy}}{{dt}}\right)×\frac{{dt}}{{dx}} \\ $$$$\:\:={t}×\left\{{t}\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }+\frac{{dy}}{{dt}}\right\}={t}^{\mathrm{2}} \frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }+{t}\frac{{dy}}{{dt}} \\ $$$${now} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+\mathrm{3}\frac{{dy}}{{dx}}+\mathrm{2}{y}={sin}\left({e}^{{x}} \right) \\ $$$${t}^{\mathrm{2}} \frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }+{t}\frac{{dy}}{{dt}}+\mathrm{3}{t}\frac{{dy}}{{dt}}+\mathrm{2}{y}={sin}\left({t}\right) \\ $$$${t}^{\mathrm{2}} \frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }+\mathrm{4}{t}\frac{{dy}}{{dt}}+\mathrm{2}{y}={sint} \\ $$$${now} \\ $$$$\left[\theta\left(\theta−\mathrm{1}\right)+\mathrm{4}\theta+\mathrm{2}\right]{y}={sint}\:\:\:\:\theta=\frac{{d}}{{dt}} \\ $$$${for} \\ $$$${C}.{F} \\ $$$$\theta^{\mathrm{2}} −\theta+\mathrm{4}\theta+\mathrm{2}=\mathrm{0} \\ $$$$\left(\theta+\mathrm{1}\right)\left(\theta+\mathrm{2}\right)=\mathrm{0} \\ $$$$\theta=−\mathrm{1},−\mathrm{2} \\ $$$${so}\:{C}.{F}={C}_{\mathrm{1}} {e}^{−{t}} +{C}_{\mathrm{2}} {e}^{−\mathrm{2}{t}} \rightarrow{C}_{\mathrm{1}} {e}^{−{e}^{{x}} } +{C}_{\mathrm{2}} {e}^{−\mathrm{2}{e}^{{x}} } \\ $$$${P}.{I} \\ $$$${y}=\frac{\mathrm{1}}{\theta^{\mathrm{2}} +\mathrm{3}\theta+\mathrm{2}}×{sint} \\ $$$$=\frac{\theta^{\mathrm{2}} +\mathrm{2}−\mathrm{3}\theta}{\left(\theta^{\mathrm{2}} +\mathrm{2}+\mathrm{3}\theta\right)\left(\theta^{\mathrm{2}} +\mathrm{2}−\mathrm{3}\theta\right)}×{sint} \\ $$$$=\frac{\theta^{\mathrm{2}} +\mathrm{2}−\mathrm{3}\theta}{\left(\theta^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} −\mathrm{9}\theta^{\mathrm{2}} }{sint} \\ $$$$=\frac{\mathrm{1}}{\left(−\mathrm{1}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} −\mathrm{9}\left(−\mathrm{1}^{\mathrm{2}} \right)}×\left\{−{sint}+\mathrm{2}{sint}−{cost}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{9}}×\left\{{sint}−{cost}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}}×\left\{{sin}\left({e}^{{x}} \right)−{cos}\left({e}^{{x}} \right)\right\} \\ $$$${so}\:{complete}\:{solution}\:{is} \\ $$$${C}_{\mathrm{1}} \:{e}^{−{e}^{{x}} } +{C}_{\mathrm{2}} {e}^{−\mathrm{2}{e}^{{x}} } +\frac{\mathrm{1}}{\mathrm{10}}\left\{{sin}\left({e}^{{x}} \right)−{cos}\left({e}^{{x}} \right)\right\} \\ $$$${pls}\:{check}... \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Umar last updated on 12/Nov/18

thanks

$$\mathrm{thanks} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 12/Nov/18

most welcome...

$${most}\:{welcome}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com