Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 47657 by behi83417@gmail.com last updated on 12/Nov/18

Commented by mr W last updated on 13/Nov/18

dear father from Behi:  it took me some time, but I could finally  find the old question #15969 where  this interesting question was once  treated. I gave there a method how  to draw the requested equilateral  triangle and the formula to calculate  its side length which is  l=(√((a^2 +b^2 +c^2 ±(√(6(a^2 b^2 +b^2 c^2 +c^2 a^2 )−3(a^4 +b^4 +c^4 ))))/2))  with a,b,c=distances from a point   to the vertexes of the triangle.    in our case we have  a=5  b=7  c=11  ⇒l≈11.9342 or ≈7.2509

dearfatherfromBehi:ittookmesometime,butIcouldfinallyYou can't use 'macro parameter character #' in math modethisinterestingquestionwasoncetreated.Igavethereamethodhowtodrawtherequestedequilateraltriangleandtheformulatocalculateitssidelengthwhichisl=a2+b2+c2±6(a2b2+b2c2+c2a2)3(a4+b4+c4)2witha,b,c=distancesfromapointtothevertexesofthetriangle.inourcasewehavea=5b=7c=11l11.9342or7.2509

Commented by MJS last updated on 13/Nov/18

great!  but how to decide if the given point is inside  our outside the triangle(s)?

great!buthowtodecideifthegivenpointisinsideouroutsidethetriangle(s)?

Commented by behi83417@gmail.com last updated on 13/Nov/18

i have no words to say master.  i just say thanks in advance sir.  ......and memories attack!

ihavenowordstosaymaster.ijustsaythanksinadvancesir.......andmemoriesattack!

Commented by mr W last updated on 11/Feb/20

to see if the point p is inside or outside  the triangle, we calculate the angles  between a and b, b and c as well as  c and a. if all of these angles are  obtuse, then point p lies inside.  if at least one of these angles is acute,  then point p lies outside.  in our example:  with l=11.9342  cos α=((b^2 +c^2 −l^2 )/(2bc))⇒α=79.7°<90°  cos β=((c^2 +a^2 −l^2 )/(2ca))⇒β=88.1°<90°  cos γ=((a^2 +b^2 −l^2 )/(2ab))⇒γ=167.8°  ⇒p is outside.  with l=7.2509  cos α=((b^2 +c^2 −l^2 )/(2bc))⇒α=40.3°<90°  cos β=((c^2 +a^2 −l^2 )/(2ca))⇒β=31.9°<90°  cos γ=((a^2 +b^2 −l^2 )/(2ab))⇒γ=72.2°<90°  ⇒p is outside.    [conclusion not correct, needs to be  amended...]

toseeifthepointpisinsideoroutsidethetriangle,wecalculatetheanglesbetweenaandb,bandcaswellascanda.ifalloftheseanglesareobtuse,thenpointpliesinside.ifatleastoneoftheseanglesisacute,thenpointpliesoutside.inourexample:withl=11.9342cosα=b2+c2l22bcα=79.7°<90°cosβ=c2+a2l22caβ=88.1°<90°cosγ=a2+b2l22abγ=167.8°pisoutside.withl=7.2509cosα=b2+c2l22bcα=40.3°<90°cosβ=c2+a2l22caβ=31.9°<90°cosγ=a2+b2l22abγ=72.2°<90°pisoutside.[conclusionnotcorrect,needstobeamended...]

Commented by MJS last updated on 13/Nov/18

thank you

thankyou

Commented by MJS last updated on 14/Nov/18

l=(√((a^2 +b^2 +c^2 ±(√(6(a^2 b^2 +b^2 c^2 +c^2 a^2 )−3(a^4 +b^4 +c^4 ))))/2))=  =(√((a^2 +b^2 +c^2 ±(√(3δ)))/2)); δ=(a+b+c)(a+b−c)(a−b+c)(−a+b+c)

l=a2+b2+c2±6(a2b2+b2c2+c2a2)3(a4+b4+c4)2==a2+b2+c2±3δ2;δ=(a+b+c)(a+bc)(ab+c)(a+b+c)

Commented by mr W last updated on 14/Nov/18

thanks for this easy to remember   form!

thanksforthiseasytorememberform!

Answered by MJS last updated on 13/Nov/18

A= ((0),(0) )  B= ((s),(0) )  C= ((((1/2)s)),((((√3)/2)s)) )  P= ((p),(q) )  ∣AP∣^2 =25 ⇒ p^2 +q^2 −25=0  ∣BP∣^2 =49 ⇒ p^2 +q^2 +s^2 −2ps−49=0  ∣CP∣^2 =121 ⇒ p^2 +q^2 +s^2 −ps−(√3)qs−121=0    Solution 1  p≈4.96 q≈−.62 s≈11.93  A= ((0),(0) )  B= (((11.93)),(0) )  C= (((5.97)),((10.34)) )  P= (((4.96)),((−.62)) )    Solution 2  p≈1.97 q≈−4.60 s≈7.25  A= ((0),(0) )  B= (((7.25)),(0) )  C= (((3.63)),((6.28)) )  P= (((1.97)),((−4.60)) )    ⇒ no solution within the triangle      these are symmetrically the same:  Solution 3  p≈−4.96 q≈.62 s≈−11.93  Solution 4  p≈−1.97 q≈4.60 s≈−7.25

A=(00)B=(s0)C=(12s32s)P=(pq)AP2=25p2+q225=0BP2=49p2+q2+s22ps49=0CP2=121p2+q2+s2ps3qs121=0Solution1p4.96q.62s11.93A=(00)B=(11.930)C=(5.9710.34)P=(4.96.62)Solution2p1.97q4.60s7.25A=(00)B=(7.250)C=(3.636.28)P=(1.974.60)nosolutionwithinthetrianglethesearesymmetricallythesame:Solution3p4.96q.62s11.93Solution4p1.97q4.60s7.25

Commented by behi83417@gmail.com last updated on 13/Nov/18

thank you so much dear MJS.  this is nice and simple.  s=11.93 ,7.25 is the correct answer.

thankyousomuchdearMJS.thisisniceandsimple.s=11.93,7.25isthecorrectanswer.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com