Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 47659 by behi83417@gmail.com last updated on 12/Nov/18

Answered by ajfour last updated on 13/Nov/18

Eq. of tangent:  ((xx_1 )/a^2 )+((yy_1 )/b^2 )=1  A((a^2 /x_1 ),0)   ; B(0,(b^2 /y_1 ))  Area △AOB = ((a^2 b^2 )/(2∣x_1 y_1 ∣))     with  (x_1 ^2 /a^2 )+(y_1 ^2 /b^2 )=1  So Area △AOB = ((a^2 b)/(2∣x_1 ∣(√(1−(x_1 ^2 /a^2 )))))                 = ((a^3 b)/(2(√(x_1 ^2 (a^2 −x_1 ^2 )))))   with   x_1 ∈(−a,a) .

Eq.oftangent:xx1a2+yy1b2=1A(a2x1,0);B(0,b2y1)AreaAOB=a2b22x1y1withx12a2+y12b2=1SoAreaAOB=a2b2x11x12a2=a3b2x12(a2x12)withx1(a,a).

Answered by tanmay.chaudhury50@gmail.com last updated on 13/Nov/18

tangent at (acosθ,bsinθ)  ((x×acosθ)/a^2 )+((y×bsinθ)/b^2 )=1  (x/(a/(cosθ)))+(y/(b/(sinθ)))=1  A((a/(cosθ)),0)   B(0,(b/(sinθ)))  area triangle OAB=(1/2)×(a/(cosθ))×(b/(sinθ))=((ab)/(sin2θ))

tangentat(acosθ,bsinθ)x×acosθa2+y×bsinθb2=1xacosθ+ybsinθ=1A(acosθ,0)B(0,bsinθ)areatriangleOAB=12×acosθ×bsinθ=absin2θ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com