Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 4772 by Yozzii last updated on 07/Mar/16

Let z=Ax^2 +Bxy+Cy^2 . Find conditions  on the constants A,B,C that ensure  that the point (0,0,0) is a   (i) local minimum,  (ii) local maximum,  (ii) saddle point.

Letz=Ax2+Bxy+Cy2.FindconditionsontheconstantsA,B,Cthatensurethatthepoint(0,0,0)isa(i)localminimum,(ii)localmaximum,(ii)saddlepoint.

Commented by 123456 last updated on 09/Mar/16

z=Ax^2 +Bxy+Cy^2   z_x =2Ax+By  z_y =Bx+2Cy  z_(xx) =2A  z_(yy) =2C  z_(xy) =0

z=Ax2+Bxy+Cy2zx=2Ax+Byzy=Bx+2Cyzxx=2Azyy=2Czxy=0

Commented by 123456 last updated on 09/Mar/16

H(x,y)= [((∂^2 f/∂x^2 ),(∂^2 f/(∂x∂y))),((∂^2 f/(∂y∂x)),(∂^2 f/∂y^2 )) ]= [((2A),0),(0,(2C)) ]  (∂f/∂x)=2Ax+B  (∂f/∂y)=2Cy+B  (∂f/∂x)=0⇔2Ax+B=0⇔x=−(B/(2A))  (∂f/∂y)=0⇔2Cx+B=0⇔x=−(B/(2C))  A(x,y)=(∂^2 f/∂x^2 )=2A,Δ(x,y)=4AC  A(x,y)>0,Δ(x,y)>0⇒A>0,C>0  A(x,y)<0,Δ(x,y)>0⇒A<0,C<0  Δ(x,y)<0⇒A<0,C>0∨A>0,C<0

H(x,y)=[2fx22fxy2fyx2fy2]=[2A002C]fx=2Ax+Bfy=2Cy+Bfx=02Ax+B=0x=B2Afy=02Cx+B=0x=B2CA(x,y)=2fx2=2A,Δ(x,y)=4ACA(x,y)>0,Δ(x,y)>0A>0,C>0A(x,y)<0,Δ(x,y)>0A<0,C<0Δ(x,y)<0A<0,C>0A>0,C<0

Commented by Dnilka228 last updated on 10/Mar/16

Δ(x^y )<a⇒0>A,X<Y if Y=1  Δ(y^x )>a⇒A<(√(a+b))<m

Δ(xy)<a0>A,X<YifY=1Δ(yx)>aA<a+b<m

Commented by Dnilka228 last updated on 10/Mar/16

α>β  α=?  β=α−2  α−2=1  β=3  α=?

α>βα=?β=α2α2=1β=3α=?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com