Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 4773 by madscientist last updated on 08/Mar/16

lim_(x→0 )  ((sin(x))/x)= 1  how is this so?

$${lim}_{{x}\rightarrow\mathrm{0}\:} \:\frac{{sin}\left({x}\right)}{{x}}=\:\mathrm{1} \\ $$$${how}\:{is}\:{this}\:{so}? \\ $$$$ \\ $$

Commented by Yozzii last updated on 13/Mar/16

For x near zero, the function sinx  is very well approximated by the   Macluarin expansion   x−(x^3 /(3!))+(x^5 /(5!))−(x^7 /(7!))+(x^9 /(9!))+...=Σ_(r=0) ^∞ (((−1)^r x^(2r+1) )/((2r+1)!)).  ∴ ((sinx)/x)=(1/x)(Σ_(r=0) ^∞ (((−1)^r x^(2r+1) )/((2r+1)!)))=Σ_(r=0) ^∞ (((−1)^r x^(2r) )/((2r+1)!))  or ((sinx)/x)=1+Σ_(r=1) ^∞ (((−1)^r x^(2r) )/((2r+1)!)) for x near zero.  ∴ lim_(x→0) ((sinx)/x)=lim_(x→0) (1+Σ_(r=1) ^∞ (((−1)^r x^(2r) )/((2r+1)!)))  =1+Σ_(r=1) ^∞ (((−1)^r 0^(2r) )/((2r+1)!))  =1+0+0+0+...  lim_(x→0) ((sinx)/x)=1.

$${For}\:{x}\:{near}\:{zero},\:{the}\:{function}\:{sinx} \\ $$$${is}\:{very}\:{well}\:{approximated}\:{by}\:{the}\: \\ $$$${Macluarin}\:{expansion}\: \\ $$$${x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}−\frac{{x}^{\mathrm{7}} }{\mathrm{7}!}+\frac{{x}^{\mathrm{9}} }{\mathrm{9}!}+...=\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{r}} {x}^{\mathrm{2}{r}+\mathrm{1}} }{\left(\mathrm{2}{r}+\mathrm{1}\right)!}. \\ $$$$\therefore\:\frac{{sinx}}{{x}}=\frac{\mathrm{1}}{{x}}\left(\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{r}} {x}^{\mathrm{2}{r}+\mathrm{1}} }{\left(\mathrm{2}{r}+\mathrm{1}\right)!}\right)=\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{r}} {x}^{\mathrm{2}{r}} }{\left(\mathrm{2}{r}+\mathrm{1}\right)!} \\ $$$${or}\:\frac{{sinx}}{{x}}=\mathrm{1}+\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{r}} {x}^{\mathrm{2}{r}} }{\left(\mathrm{2}{r}+\mathrm{1}\right)!}\:{for}\:{x}\:{near}\:{zero}. \\ $$$$\therefore\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{sinx}}{{x}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{r}} {x}^{\mathrm{2}{r}} }{\left(\mathrm{2}{r}+\mathrm{1}\right)!}\right) \\ $$$$=\mathrm{1}+\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{r}} \mathrm{0}^{\mathrm{2}{r}} }{\left(\mathrm{2}{r}+\mathrm{1}\right)!} \\ $$$$=\mathrm{1}+\mathrm{0}+\mathrm{0}+\mathrm{0}+... \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{sinx}}{{x}}=\mathrm{1}. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Answered by malwaan last updated on 08/Mar/16

lim_(x→0)  ((sin x)/x) =lim_(x→0) ((cos x)/1) =cos(0)=1

$${lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{sin}\:{x}}{{x}}\:={lim}_{{x}\rightarrow\mathrm{0}} \frac{{cos}\:{x}}{\mathrm{1}}\:={cos}\left(\mathrm{0}\right)=\mathrm{1} \\ $$

Commented by Dnilka228 last updated on 10/Mar/16

lim_a ((sin a)/a)=lim_a ((cos a)/1)=cos (0)=2

$$\mathrm{lim}_{{a}} \frac{\mathrm{sin}\:{a}}{{a}}=\mathrm{lim}_{{a}} \frac{\mathrm{cos}\:{a}}{\mathrm{1}}=\mathrm{cos}\:\left(\mathrm{0}\right)=\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com