Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 47735 by behi83417@gmail.com last updated on 14/Nov/18

Commented by mr W last updated on 14/Nov/18

we only need to know the distances to  three vertexes. the distance to the  fourth vertex is not independent.

weonlyneedtoknowthedistancestothreevertexes.thedistancetothefourthvertexisnotindependent.

Commented by behi83417@gmail.com last updated on 14/Nov/18

ABCD:square.  AE=2,BE=4,CE=6  .....→AB=?

ABCD:square.AE=2,BE=4,CE=6.....AB=?

Commented by MJS last updated on 14/Nov/18

(1)  x^2 +y^2 =4  (2)  (x−a)^2 +y^2 =16  (3)  (x−a)^2 +(y−b)^2 =36  (4)  x^2 +(y−b)^2 =12  (2)−(1)  −2ax+a^2 =12  (3)−(4)  −2ax+a^2 =24  ⇒ it′s also inconsistent for ABCD being a  rectangle

(1)x2+y2=4(2)(xa)2+y2=16(3)(xa)2+(yb)2=36(4)x2+(yb)2=12(2)(1)2ax+a2=12(3)(4)2ax+a2=24itsalsoinconsistentforABCDbeingarectangle

Commented by MJS last updated on 14/Nov/18

(1)  x^2 +y^2 =4  (2)  (x−a)^2 +y^2 =16  (3)  (x−a)^2 +(y−a)^2 =36  (2)−(1)  −2ax+a^2 =12 ⇒ x=((a^2 −12)/(2a))  (3)−(2) −2ay+a^2 =20 ⇒ y=((a^2 −20)/(2a))  (1)  (a^2 −12)^2 +(a^2 −20)^2 =16a^2   a^4 −40a^2 +272=0  a_1 =2(√(5−2(√2)))≈2.95 ⇒ E outside square  a_2 =2(√(5+2(√2)))≈5.60 ⇒ E inside square

(1)x2+y2=4(2)(xa)2+y2=16(3)(xa)2+(ya)2=36(2)(1)2ax+a2=12x=a2122a(3)(2)2ay+a2=20y=a2202a(1)(a212)2+(a220)2=16a2a440a2+272=0a1=25222.95Eoutsidesquarea2=25+225.60Einsidesquare

Commented by behi83417@gmail.com last updated on 14/Nov/18

thank you so much sir MJS.perfect.

thankyousomuchsirMJS.perfect.

Answered by mr W last updated on 14/Nov/18

a=distance to vertex A=2  b=distance to vertex B=4  c=distance to vertex C=6  l=side length of square  x,y=distance to side BC and AB  x^2 +y^2 =b^2   a^2 =(l−x)^2 +y^2 =l^2 −2lx+x^2 +y^2 =l^2 +b^2 −2lx  ⇒x=((l^2 +b^2 −a^2 )/(2l))  c^2 =x^2 +(l−y)^2 =x^2 +y^2 +l^2 −2ly=l^2 +b^2 −2ly  ⇒y=((l^2 +b^2 −c^2 )/(2l))  (((l^2 +b^2 −a^2 )/(2l)))^2 +(((l^2 +b^2 −c^2 )/(2l)))^2 =b^2   2l^4 +2(2b^2 −a^2 −c^2 )l^2 +[2b^4 +a^4 +c^4 −2(a^2 +c^2 )b^2 ]=4b^2 l^2   2l^4 −2(a^2 +c^2 )l^2 +[2b^4 +a^4 +c^4 −2(a^2 +c^2 )b^2 ]=0  l^2 =(((a^2 +c^2 )±(√((a^4 +c^4 +2a^2 c^2 )−2[2b^4 +a^4 +c^4 −2(a^2 +c^2 )b^2 ])))/2)  l^2 =((a^2 +c^2 ±(√([(a+c)^2 −2b^2 ][2b^2 −(a−c)^2 ])))/2)  l^2 =((a^2 +c^2 ±(√((a+(√2)b+c)(−a+(√2)b+c)(a−(√2)b+c)(a+(√2)b−c))))/2)  l^2 =((2^2 +6^2 ±(√((64−2×16)(2×16−16))))/2)  l^2 =20±8(√2)  ⇒l=2(√(5±2(√2)))=5.59 or 2.95

a=distancetovertexA=2b=distancetovertexB=4c=distancetovertexC=6l=sidelengthofsquarex,y=distancetosideBCandABx2+y2=b2a2=(lx)2+y2=l22lx+x2+y2=l2+b22lxx=l2+b2a22lc2=x2+(ly)2=x2+y2+l22ly=l2+b22lyy=l2+b2c22l(l2+b2a22l)2+(l2+b2c22l)2=b22l4+2(2b2a2c2)l2+[2b4+a4+c42(a2+c2)b2]=4b2l22l42(a2+c2)l2+[2b4+a4+c42(a2+c2)b2]=0l2=(a2+c2)±(a4+c4+2a2c2)2[2b4+a4+c42(a2+c2)b2]2l2=a2+c2±[(a+c)22b2][2b2(ac)2]2l2=a2+c2±(a+2b+c)(a+2b+c)(a2b+c)(a+2bc)2l2=22+62±(642×16)(2×1616)2l2=20±82l=25±22=5.59or2.95

Commented by behi83417@gmail.com last updated on 14/Nov/18

excellent sir mrW.thank you very  much.

excellentsirmrW.thankyouverymuch.

Commented by mr W last updated on 14/Nov/18

Commented by mr W last updated on 14/Nov/18

this is how to draw the requested square.    draw three circles with radii a,b,c from  the same center P.    take a fixed point A on the first circle.    select three points on the second circle,  say s1,s2 and s3.    with AS_1  as side length construct a  square whose vertex opposite to S_1  is T_1 .  similarly we get from other two squares  points T_2  and T_3 .    draw a fourth circle through points  T_1 ,T_2  and T_3 .  this fourth circle intersects the third  circle at two points, or at one point, or  not at all.    lets say the intersection points are  B and B′.  AB or AB′ is the side length of the  requested square.

thisishowtodrawtherequestedsquare.drawthreecircleswithradiia,b,cfromthesamecenterP.takeafixedpointAonthefirstcircle.selectthreepointsonthesecondcircle,says1,s2ands3.withAS1assidelengthconstructasquarewhosevertexoppositetoS1isT1.similarlywegetfromothertwosquarespointsT2andT3.drawafourthcirclethroughpointsT1,T2andT3.thisfourthcircleintersectsthethirdcircleattwopoints,oratonepoint,ornotatall.letssaytheintersectionpointsareBandB.ABorABisthesidelengthoftherequestedsquare.

Commented by behi83417@gmail.com last updated on 14/Nov/18

intresting !you are amazing master.  thank you very much dear.

intresting!youareamazingmaster.thankyouverymuchdear.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com