Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 47737 by ajfour last updated on 14/Nov/18

  I = ∫_0 ^(  L/2) ((Rz^2 )/((d^2 +z^2 )(√(d^2 +z^2 −R^2 )))) dz   Find I .

$$\:\:{I}\:=\:\int_{\mathrm{0}} ^{\:\:{L}/\mathrm{2}} \frac{{Rz}^{\mathrm{2}} }{\left({d}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)\sqrt{{d}^{\mathrm{2}} +{z}^{\mathrm{2}} −{R}^{\mathrm{2}} }}\:{dz} \\ $$$$\:{Find}\:{I}\:. \\ $$

Answered by MJS last updated on 14/Nov/18

R∫(z^2 /((z^2 +d^2 )(√(z^2 +d^2 −R^2 ))))dz=  =R∫(dz/(√(z^2 +d^2 −R^(2 ) )))−d^2 R∫(dz/((z^2 +d^2 )(√(z^2 +d^2 −R^2 ))))    R∫(dz/(√(z^2 +d^2 −R^(2 ) )))=       [t=(z/(√(d^2 −R^2 ))) → dz=(√(d^2 −R^2 ))dt]  =R∫(dt/(√(t^2 +1)))=Rln (t+(√(t^2 +1))) =Rln ((z+(√(z^2 +d^2 −R^2 )))/(√(d^2 −R^2 )))    −d^2 R∫(dz/((z^2 +d^2 )(√(z^2 +d^2 −R^2 ))))=       [z=(√(d^2 −R^2 ))tan u → u=arctan (z/(√(d^2 −R^2 ))); dz=(√(d^2 −R^2 ))sec^2  u du]  =−d^2 R∫(((√(d^2 −R^2 ))sec^2  u)/((d^2 +(d^2 −R^2 )tan^2  u)(√(d^2 −R^2 +(d^2 −R^2 )tan^2  u))))du=  =−d^2 R∫((sec u)/(d^2 +(d^2 −R^2 )tan^2  u))du=−d^2 R∫((cos u)/(d^2 −R^2 sin^2  u))du=       [v=sin u → du=(dv/(cos u))]  =−d^2 R∫(dv/(d^2 −R^2 v^2 ))=−d^2 R∫(dv/((d+Rv)(d−Rv)))=  =(dR/2)∫(dv/(d−Rv))−(dR/2)∫(dv/(d+Rv))=  =(d/2)ln ((d−Rv)/(d+Rv)) =(d/2)ln ((d−Rsin u)/(d+Rsin u))=  =(d/2)ln ((d−Rsin arctan (z/(√(d^2 −R^2 ))))/(d+Rsin arctan (z/(√(d^2 −R^2 )))))=  =(d/2)ln ((d−R(z/(√(z^2 +d^2 −R^2 ))))/(d+R(z/(√(z^2 +d^2 −R^2 ))))) =(d/2)ln ((d(√(z^2 +d^2 −R^2 ))−Rz)/(d(√(z^2 +d^2 −R^2 ))+Rz))    ∫((Rz^2 )/((z^2 +d^2 )(√(z^2 +d^2 −R^2 ))))dz=  Rln ∣((z+(√(z^2 +d^2 −R^2 )))/(√(d^2 −R^2 )))∣ +(d/2)ln ∣((Rz−d(√(z^2 +d^2 −R^2 )))/(Rz+d(√(z^2 +d^2 −R^2 ))))∣ +C

$${R}\int\frac{{z}^{\mathrm{2}} }{\left({z}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)\sqrt{{z}^{\mathrm{2}} +{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }}{dz}= \\ $$$$={R}\int\frac{{dz}}{\sqrt{{z}^{\mathrm{2}} +{d}^{\mathrm{2}} −{R}^{\mathrm{2}\:} }}−{d}^{\mathrm{2}} {R}\int\frac{{dz}}{\left({z}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)\sqrt{{z}^{\mathrm{2}} +{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }} \\ $$$$ \\ $$$${R}\int\frac{{dz}}{\sqrt{{z}^{\mathrm{2}} +{d}^{\mathrm{2}} −{R}^{\mathrm{2}\:} }}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{{z}}{\sqrt{{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }}\:\rightarrow\:{dz}=\sqrt{{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }{dt}\right] \\ $$$$={R}\int\frac{{dt}}{\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}={R}\mathrm{ln}\:\left({t}+\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}\right)\:={R}\mathrm{ln}\:\frac{{z}+\sqrt{{z}^{\mathrm{2}} +{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }}{\sqrt{{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }} \\ $$$$ \\ $$$$−{d}^{\mathrm{2}} {R}\int\frac{{dz}}{\left({z}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)\sqrt{{z}^{\mathrm{2}} +{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }}= \\ $$$$\:\:\:\:\:\left[{z}=\sqrt{{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }\mathrm{tan}\:{u}\:\rightarrow\:{u}=\mathrm{arctan}\:\frac{{z}}{\sqrt{{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }};\:{dz}=\sqrt{{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }\mathrm{sec}^{\mathrm{2}} \:{u}\:{du}\right] \\ $$$$=−{d}^{\mathrm{2}} {R}\int\frac{\sqrt{{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }\mathrm{sec}^{\mathrm{2}} \:{u}}{\left({d}^{\mathrm{2}} +\left({d}^{\mathrm{2}} −{R}^{\mathrm{2}} \right)\mathrm{tan}^{\mathrm{2}} \:{u}\right)\sqrt{{d}^{\mathrm{2}} −{R}^{\mathrm{2}} +\left({d}^{\mathrm{2}} −{R}^{\mathrm{2}} \right)\mathrm{tan}^{\mathrm{2}} \:{u}}}{du}= \\ $$$$=−{d}^{\mathrm{2}} {R}\int\frac{\mathrm{sec}\:{u}}{{d}^{\mathrm{2}} +\left({d}^{\mathrm{2}} −{R}^{\mathrm{2}} \right)\mathrm{tan}^{\mathrm{2}} \:{u}}{du}=−{d}^{\mathrm{2}} {R}\int\frac{\mathrm{cos}\:{u}}{{d}^{\mathrm{2}} −{R}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:{u}}{du}= \\ $$$$\:\:\:\:\:\left[{v}=\mathrm{sin}\:{u}\:\rightarrow\:{du}=\frac{{dv}}{\mathrm{cos}\:{u}}\right] \\ $$$$=−{d}^{\mathrm{2}} {R}\int\frac{{dv}}{{d}^{\mathrm{2}} −{R}^{\mathrm{2}} {v}^{\mathrm{2}} }=−{d}^{\mathrm{2}} {R}\int\frac{{dv}}{\left({d}+{Rv}\right)\left({d}−{Rv}\right)}= \\ $$$$=\frac{{dR}}{\mathrm{2}}\int\frac{{dv}}{{d}−{Rv}}−\frac{{dR}}{\mathrm{2}}\int\frac{{dv}}{{d}+{Rv}}= \\ $$$$=\frac{{d}}{\mathrm{2}}\mathrm{ln}\:\frac{{d}−{Rv}}{{d}+{Rv}}\:=\frac{{d}}{\mathrm{2}}\mathrm{ln}\:\frac{{d}−{R}\mathrm{sin}\:{u}}{{d}+{R}\mathrm{sin}\:{u}}= \\ $$$$=\frac{{d}}{\mathrm{2}}\mathrm{ln}\:\frac{{d}−{R}\mathrm{sin}\:\mathrm{arctan}\:\frac{{z}}{\sqrt{{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }}}{{d}+{R}\mathrm{sin}\:\mathrm{arctan}\:\frac{{z}}{\sqrt{{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }}}= \\ $$$$=\frac{{d}}{\mathrm{2}}\mathrm{ln}\:\frac{{d}−{R}\frac{{z}}{\sqrt{{z}^{\mathrm{2}} +{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }}}{{d}+{R}\frac{{z}}{\sqrt{{z}^{\mathrm{2}} +{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }}}\:=\frac{{d}}{\mathrm{2}}\mathrm{ln}\:\frac{{d}\sqrt{{z}^{\mathrm{2}} +{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }−{Rz}}{{d}\sqrt{{z}^{\mathrm{2}} +{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }+{Rz}} \\ $$$$ \\ $$$$\int\frac{{Rz}^{\mathrm{2}} }{\left({z}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)\sqrt{{z}^{\mathrm{2}} +{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }}{dz}= \\ $$$${R}\mathrm{ln}\:\mid\frac{{z}+\sqrt{{z}^{\mathrm{2}} +{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }}{\sqrt{{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }}\mid\:+\frac{{d}}{\mathrm{2}}\mathrm{ln}\:\mid\frac{{Rz}−{d}\sqrt{{z}^{\mathrm{2}} +{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }}{{Rz}+{d}\sqrt{{z}^{\mathrm{2}} +{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }}\mid\:+{C} \\ $$

Commented by MJS last updated on 14/Nov/18

it only works for d>R

$$\mathrm{it}\:\mathrm{only}\:\mathrm{works}\:\mathrm{for}\:{d}>{R} \\ $$

Commented by MJS last updated on 14/Nov/18

I have no time to check it for typos and other  minor mistakes but this is the path to solve it

$$\mathrm{I}\:\mathrm{have}\:\mathrm{no}\:\mathrm{time}\:\mathrm{to}\:\mathrm{check}\:\mathrm{it}\:\mathrm{for}\:\mathrm{typos}\:\mathrm{and}\:\mathrm{other} \\ $$$$\mathrm{minor}\:\mathrm{mistakes}\:\mathrm{but}\:\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{path}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{it} \\ $$

Commented by ajfour last updated on 14/Nov/18

Thank you Sir, understood the  method, quite natural.

$${Thank}\:{you}\:{Sir},\:{understood}\:{the} \\ $$$${method},\:{quite}\:{natural}. \\ $$

Commented by ajfour last updated on 14/Nov/18

of course, it should be so, please  resolve our issue; if at all this  integral arises or not ?  Please view Q.47728

$${of}\:{course},\:{it}\:{should}\:{be}\:{so},\:{please} \\ $$$${resolve}\:{our}\:{issue};\:{if}\:{at}\:{all}\:{this} \\ $$$${integral}\:{arises}\:{or}\:{not}\:? \\ $$$${Please}\:{view}\:{Q}.\mathrm{47728}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com