Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 47778 by gunawan last updated on 14/Nov/18

f(x)=2x^3 +x^2 −2x−1  f^(−1) (x)=...

f(x)=2x3+x22x1f1(x)=...

Answered by MJS last updated on 15/Nov/18

2y^3 +y^2 −2y−x−1=0  y^3 +(1/2)y^2 −y−((x+1)/2)=0  y=z−(1/6)  z^3 −((13)/(12))z−((54x+35)/(108))=0  now it depends on the value of x  p=−((13)/(12)); q=−((54x+35)/(108))  D=(p^3 /(27))+(q^2 /4)=(1/(16))x^2 +((35)/(432))x−(1/(48))    case 1  D<0 ⇒ 3 real solutions ⇒ trigonometric method       −((35)/(54))−((13(√(13)))/(54))<x<−((35)/(54))+((13(√(13)))/(54))       z=2(√(−(p/3)))sin (((2πk)/3)+(1/3)arcsin (((9q)/(2p^2 ))(√(−(p/3))))) with k=0, 1, 2       z= { ((−((√(13))/3)sin ((1/3)arcsin (((54x+35)(√(13)))/(169))))),((((√(13))/3)sin ((π/3)+(1/3)arcsin (((54x+35)(√(13)))/(169))))),((−((√(13))/3)cos ((π/6)+(1/3)arcsin (((54x+35)(√(13)))/(169))))) :}       f^(−1) :  { ((y=−(1/6)−((√(13))/3)sin ((1/3)arcsin (((54x+35)(√(13)))/(169))))),((y=−(1/6)+((√(13))/3)sin ((π/3)+(1/3)arcsin (((54x+35)(√(13)))/(169))))),((y=−(1/6)−((√(13))/3)cos ((π/6)+(1/3)arcsin (((54x+35)(√(13)))/(169))))) :}    case 2  D=0 ⇒ 2 real solutions ⇒ Cardano′s method       x=−((35)/(54))±((13(√(13)))/(54))       z=((−(q/2)+(√D)))^(1/3) +((−(q/2)−(√D)))^(1/3) =2((−(q/2)))^(1/3)        z=±((√(13))/3)       f^(−1) (x): y=−(1/6)±((√(13))/3)    case 3  D>0 ⇒ 1 real solution ⇒ Cardano′s method       x<−((35)/(54))−((13(√(13)))/(54)) ∨ x>−((35)/(54))+((13(√(13)))/(54))       z=((−(q/2)+(√D)))^(1/3) +((−(q/2)−(√D)))^(1/3)        z=(1/6)((54x+35+6(√(3(27x^2 +35x−9)))))^(1/3) +(1/6)((54x+35−6(√(3(27x^2 +35x−9)))))^(1/3)        f^(−1) (x): (1/6)(−1+((54x+35+6(√(3(27x^2 +35x−9)))))^(1/3) +((54x+35−6(√(3(27x^2 +35x−9)))))^(1/3) )

2y3+y22yx1=0y3+12y2yx+12=0y=z16z31312z54x+35108=0nowitdependsonthevalueofxp=1312;q=54x+35108D=p327+q24=116x2+35432x148case1D<03realsolutionstrigonometricmethod3554131354<x<3554+131354z=2p3sin(2πk3+13arcsin(9q2p2p3))withk=0,1,2z={133sin(13arcsin(54x+35)13169)133sin(π3+13arcsin(54x+35)13169)133cos(π6+13arcsin(54x+35)13169)f1:{y=16133sin(13arcsin(54x+35)13169)y=16+133sin(π3+13arcsin(54x+35)13169)y=16133cos(π6+13arcsin(54x+35)13169)case2D=02realsolutionsCardanosmethodx=3554±131354z=q2+D3+q2D3=2q23z=±133f1(x):y=16±133case3D>01realsolutionCardanosmethodx<3554131354x>3554+131354z=q2+D3+q2D3z=1654x+35+63(27x2+35x9)3+1654x+3563(27x2+35x9)3f1(x):16(1+54x+35+63(27x2+35x9)3+54x+3563(27x2+35x9)3)

Commented by gunawan last updated on 21/Nov/18

thanks

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com